Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.20nn Structured version   Unicode version

Theorem jm2.20nn 35816
Description: Lemma 2.20 of [JonesMatijasevic] p. 696, the "first step down lemma". (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
jm2.20nn  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M )  <->  ( N  x.  ( A Yrm  N ) ) 
||  M ) )

Proof of Theorem jm2.20nn
StepHypRef Expression
1 simp1 1006 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  A  e.  ( ZZ>= `  2 )
)
2 nnz 10961 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  ZZ )
323ad2ant3 1029 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  N  e.  ZZ )
4 frmy 35726 . . . . . . . . . . 11  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
54fovcl 6413 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
61, 3, 5syl2anc 666 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  ZZ )
76zcnd 11043 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  CC )
87adantr 467 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  e.  CC )
98sqvald 12414 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  =  ( ( A Yrm  N )  x.  ( A Yrm  N ) ) )
10 zsqcl 12346 . . . . . . . . 9  |-  ( ( A Yrm  N )  e.  ZZ  ->  ( ( A Yrm  N ) ^ 2 )  e.  ZZ )
116, 10syl 17 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  e.  ZZ )
1211adantr 467 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  e.  ZZ )
13 frmx 35725 . . . . . . . . . . . 12  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
1413fovcl 6413 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
151, 3, 14syl2anc 666 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Xrm 
N )  e.  NN0 )
1615nn0zd 11040 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Xrm 
N )  e.  ZZ )
1716adantr 467 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Xrm  N )  e.  ZZ )
187sqvald 12414 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  =  ( ( A Yrm  N )  x.  ( A Yrm  N ) ) )
1918adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  =  ( ( A Yrm  N )  x.  ( A Yrm  N ) ) )
20 simpr 463 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M ) )
2119, 20eqbrtrrd 4444 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm  M ) )
22 nnz 10961 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  M  e.  ZZ )
23223ad2ant2 1028 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  M  e.  ZZ )
244fovcl 6413 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
251, 23, 24syl2anc 666 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
M )  e.  ZZ )
26 muldvds1 14320 . . . . . . . . . . . . . 14  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( A Yrm  N )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ )  ->  (
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm  M )  ->  ( A Yrm  N
)  ||  ( A Yrm  M
) ) )
276, 6, 25, 26syl3anc 1265 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm  M )  ->  ( A Yrm  N
)  ||  ( A Yrm  M
) ) )
2827adantr 467 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm 
M )  ->  ( A Yrm 
N )  ||  ( A Yrm 
M ) ) )
2921, 28mpd 15 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  ||  ( A Yrm  M ) )
30 simpl1 1009 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
313adantr 467 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  e.  ZZ )
3223adantr 467 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  M  e.  ZZ )
33 jm2.19 35812 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  ||  M  <->  ( A Yrm  N
)  ||  ( A Yrm  M
) ) )
3430, 31, 32, 33syl3anc 1265 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  ||  M  <->  ( A Yrm  N )  ||  ( A Yrm 
M ) ) )
3529, 34mpbird 236 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  ||  M )
36 simpl2 1010 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  M  e.  NN )
37 simpl3 1011 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  e.  NN )
38 nndivdvds 14304 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  ||  M  <->  ( M  /  N )  e.  NN ) )
3936, 37, 38syl2anc 666 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  ||  M  <->  ( M  /  N )  e.  NN ) )
4035, 39mpbid 214 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( M  /  N
)  e.  NN )
41 nnm1nn0 10913 . . . . . . . . 9  |-  ( ( M  /  N )  e.  NN  ->  (
( M  /  N
)  -  1 )  e.  NN0 )
4240, 41syl 17 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  -  1 )  e.  NN0 )
43 zexpcl 12288 . . . . . . . 8  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( M  /  N )  -  1 )  e. 
NN0 )  ->  (
( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  e.  ZZ )
4417, 42, 43syl2anc 666 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  e.  ZZ )
4540nnzd 11041 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( M  /  N
)  e.  ZZ )
466adantr 467 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  e.  ZZ )
4745, 46zmulcld 11048 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  ( A Yrm 
N ) )  e.  ZZ )
4825adantr 467 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  M )  e.  ZZ )
49 nncn 10619 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  M  e.  CC )
50493ad2ant2 1028 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  M  e.  CC )
51 nncn 10619 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  e.  CC )
52513ad2ant3 1029 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  N  e.  CC )
53 nnne0 10644 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  =/=  0 )
54533ad2ant3 1029 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  N  =/=  0 )
5550, 52, 54divcan2d 10387 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  =  M )
5655oveq2d 6319 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  ( N  x.  ( M  /  N ) ) )  =  ( A Yrm  M ) )
5756, 25eqeltrd 2511 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  ( N  x.  ( M  /  N ) ) )  e.  ZZ )
5857adantr 467 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  ( N  x.  ( M  /  N
) ) )  e.  ZZ )
5944, 46zmulcld 11048 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) )  e.  ZZ )
6045, 59zmulcld 11048 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) )  e.  ZZ )
6158, 60zsubcld 11047 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )
62 3nn0 10889 . . . . . . . . . . . . 13  |-  3  e.  NN0
6362a1i 11 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  3  e.  NN0 )
64 zexpcl 12288 . . . . . . . . . . . 12  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  3  e. 
NN0 )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
656, 63, 64syl2anc 666 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
6665adantr 467 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 3 )  e.  ZZ )
67 2nn0 10888 . . . . . . . . . . . . 13  |-  2  e.  NN0
6867a1i 11 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  2  e.  NN0 )
69 3z 10972 . . . . . . . . . . . . . 14  |-  3  e.  ZZ
70 2re 10681 . . . . . . . . . . . . . . 15  |-  2  e.  RR
71 3re 10685 . . . . . . . . . . . . . . 15  |-  3  e.  RR
72 2lt3 10779 . . . . . . . . . . . . . . 15  |-  2  <  3
7370, 71, 72ltleii 9759 . . . . . . . . . . . . . 14  |-  2  <_  3
74 2z 10971 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
7574eluz1i 11168 . . . . . . . . . . . . . 14  |-  ( 3  e.  ( ZZ>= `  2
)  <->  ( 3  e.  ZZ  /\  2  <_ 
3 ) )
7669, 73, 75mpbir2an 929 . . . . . . . . . . . . 13  |-  3  e.  ( ZZ>= `  2 )
7776a1i 11 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  3  e.  ( ZZ>= `  2 )
)
78 dvdsexp 14354 . . . . . . . . . . . 12  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  2  e. 
NN0  /\  3  e.  ( ZZ>= `  2 )
)  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 ) )
796, 68, 77, 78syl3anc 1265 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( A Yrm  N ) ^
3 ) )
8079adantr 467 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 ) )
81 jm2.23 35815 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  ( M  /  N )  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  ( M  /  N
) ) )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )
8230, 31, 40, 81syl3anc 1265 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 3 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
83 dvdstr 14330 . . . . . . . . . . 11  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  ->  (
( ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  N ) ^ 3 )  /\  ( ( A Yrm  N ) ^ 3 ) 
||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
8483imp 431 . . . . . . . . . 10  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  (
( A Yrm  N ) ^
3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  /\  (
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 )  /\  ( ( A Yrm  N ) ^ 3 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
8512, 66, 61, 80, 82, 84syl32anc 1273 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
86 dvds2sub 14328 . . . . . . . . . 10  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  ->  (
( ( ( A Yrm  N ) ^ 2 ) 
||  ( A Yrm  M )  /\  ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  M )  -  (
( A Yrm  ( N  x.  ( M  /  N
) ) )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) ) ) )
8786imp 431 . . . . . . . . 9  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm 
M )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  /\  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M )  /\  ( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  M )  -  (
( A Yrm  ( N  x.  ( M  /  N
) ) )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
8812, 48, 61, 20, 85, 87syl32anc 1273 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  M )  -  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
8955adantr 467 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  x.  ( M  /  N ) )  =  M )
9089oveq2d 6319 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  ( N  x.  ( M  /  N
) ) )  =  ( A Yrm  M ) )
9190oveq1d 6318 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  =  ( ( A Yrm  M )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
9291oveq2d 6319 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( A Yrm  M )  -  (
( A Yrm  M )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
9325zcnd 11043 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
M )  e.  CC )
9493adantr 467 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  M )  e.  CC )
9560zcnd 11043 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) )  e.  CC )
9694, 95nncand 9993 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  M )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) )
9745zcnd 11043 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( M  /  N
)  e.  CC )
9844zcnd 11043 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  e.  CC )
9997, 98, 8mul12d 9844 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) )  =  ( ( ( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  x.  (
( M  /  N
)  x.  ( A Yrm  N ) ) ) )
10096, 99eqtrd 2464 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  M )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( ( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  x.  (
( M  /  N
)  x.  ( A Yrm  N ) ) ) )
10192, 100eqtrd 2464 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( ( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  x.  (
( M  /  N
)  x.  ( A Yrm  N ) ) ) )
10288, 101breqtrd 4446 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( ( M  /  N )  x.  ( A Yrm  N ) ) ) )
103 gcdcom 14477 . . . . . . . . . . 11  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( A Xrm  N )  e.  ZZ )  ->  ( ( A Yrm  N )  gcd  ( A Xrm  N ) )  =  ( ( A Xrm  N )  gcd  ( A Yrm  N ) ) )
1046, 16, 103syl2anc 666 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  gcd  ( A Xrm  N ) )  =  ( ( A Xrm  N )  gcd  ( A Yrm  N ) ) )
105 jm2.19lem1 35808 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  (
( A Xrm  N )  gcd  ( A Yrm  N ) )  =  1 )
1061, 3, 105syl2anc 666 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Xrm  N )  gcd  ( A Yrm  N ) )  =  1 )
107104, 106eqtrd 2464 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1 )
108107adantr 467 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1 )
10967a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
2  e.  NN0 )
110 rpexp12i 14667 . . . . . . . . 9  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( A Xrm  N )  e.  ZZ  /\  ( 2  e.  NN0  /\  ( ( M  /  N )  -  1 )  e.  NN0 )
)  ->  ( (
( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1  ->  (
( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) ) )  =  1 ) )
11146, 17, 109, 42, 110syl112anc 1269 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1  ->  ( ( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) ) )  =  1 ) )
112108, 111mpd 15 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) ) )  =  1 )
113 coprmdvds 14652 . . . . . . . 8  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  e.  ZZ  /\  ( ( M  /  N )  x.  ( A Yrm 
N ) )  e.  ZZ )  ->  (
( ( ( A Yrm  N ) ^ 2 ) 
||  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( ( M  /  N )  x.  ( A Yrm  N ) ) )  /\  (
( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) ) )  =  1 )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( M  /  N )  x.  ( A Yrm 
N ) ) ) )
114113imp 431 . . . . . . 7  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  (
( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  e.  ZZ  /\  ( ( M  /  N )  x.  ( A Yrm 
N ) )  e.  ZZ )  /\  (
( ( A Yrm  N ) ^ 2 )  ||  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( ( M  /  N )  x.  ( A Yrm  N ) ) )  /\  ( ( ( A Yrm  N ) ^
2 )  gcd  (
( A Xrm  N ) ^
( ( M  /  N )  -  1 ) ) )  =  1 ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( M  /  N )  x.  ( A Yrm 
N ) ) )
11512, 44, 47, 102, 112, 114syl32anc 1273 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( M  /  N )  x.  ( A Yrm 
N ) ) )
1169, 115eqbrtrrd 4444 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( ( M  /  N )  x.  ( A Yrm  N ) ) )
117 rmy0 35741 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
1181173ad2ant1 1027 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  0 )  =  0 )
119 nngt0 10640 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  0  <  N )
1201193ad2ant3 1029 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  0  <  N )
121 0zd 10951 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  0  e.  ZZ )
122 ltrmy 35766 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  0  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  <  N  <->  ( A Yrm  0 )  <  ( A Yrm  N ) ) )
1231, 121, 3, 122syl3anc 1265 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
0  <  N  <->  ( A Yrm  0 )  <  ( A Yrm  N ) ) )
124120, 123mpbid 214 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  0 )  <  ( A Yrm 
N ) )
125118, 124eqbrtrrd 4444 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  0  <  ( A Yrm  N ) )
126 elnnz 10949 . . . . . . . . 9  |-  ( ( A Yrm  N )  e.  NN  <->  ( ( A Yrm  N )  e.  ZZ  /\  0  < 
( A Yrm  N ) ) )
1276, 125, 126sylanbrc 669 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  NN )
128 nnne0 10644 . . . . . . . 8  |-  ( ( A Yrm  N )  e.  NN  ->  ( A Yrm  N )  =/=  0 )
129127, 128syl 17 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  =/=  0
)
130129adantr 467 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  =/=  0 )
131 dvdsmulcr 14325 . . . . . 6  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( M  /  N )  e.  ZZ  /\  ( ( A Yrm  N )  e.  ZZ  /\  ( A Yrm  N )  =/=  0 ) )  -> 
( ( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  (
( M  /  N
)  x.  ( A Yrm  N ) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
13246, 45, 46, 130, 131syl112anc 1269 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  (
( M  /  N
)  x.  ( A Yrm  N ) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
133116, 132mpbid 214 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  ||  ( M  /  N
) )
13454adantr 467 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  =/=  0 )
135 dvdscmulr 14324 . . . . 5  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( M  /  N )  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( N  x.  ( A Yrm  N ) ) 
||  ( N  x.  ( M  /  N
) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
13646, 45, 31, 134, 135syl112anc 1269 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( N  x.  ( A Yrm  N ) ) 
||  ( N  x.  ( M  /  N
) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
137133, 136mpbird 236 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  x.  ( A Yrm 
N ) )  ||  ( N  x.  ( M  /  N ) ) )
138137, 89breqtrd 4446 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  x.  ( A Yrm 
N ) )  ||  M )
13911adantr 467 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( A Yrm 
N ) ^ 2 )  e.  ZZ )
1403, 6zmulcld 11048 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( N  x.  ( A Yrm  N
) )  e.  ZZ )
1414fovcl 6413 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  ( A Yrm  N
) )  e.  ZZ )  ->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  e.  ZZ )
1421, 140, 141syl2anc 666 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  e.  ZZ )
143142adantr 467 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  e.  ZZ )
14425adantr 467 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( A Yrm  M
)  e.  ZZ )
145 nnm1nn0 10913 . . . . . . . . 9  |-  ( ( A Yrm  N )  e.  NN  ->  ( ( A Yrm  N )  -  1 )  e. 
NN0 )
146127, 145syl 17 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  - 
1 )  e.  NN0 )
147 zexpcl 12288 . . . . . . . 8  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( A Yrm  N )  -  1 )  e.  NN0 )  ->  ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  e.  ZZ )
14816, 146, 147syl2anc 666 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  e.  ZZ )
149 dvdsmul2 14318 . . . . . . 7  |-  ( ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 2 )  e.  ZZ )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) ) )
150148, 11, 149syl2anc 666 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) ) )
15118oveq2d 6319 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) )  =  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N )  x.  ( A Yrm 
N ) ) ) )
152148zcnd 11043 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  e.  CC )
153152, 7, 7mul12d 9844 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N )  x.  ( A Yrm 
N ) ) )  =  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )
154151, 153eqtrd 2464 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) )  =  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )
155150, 154breqtrd 4446 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )
156148, 6zmulcld 11048 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) )  e.  ZZ )
1576, 156zmulcld 11048 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) )  e.  ZZ )
158142, 157zsubcld 11047 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )
159 jm2.23 35815 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  ( A Yrm  N )  e.  NN )  ->  ( ( A Yrm  N ) ^ 3 ) 
||  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ (
( A Yrm  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )
1601, 3, 127, 159syl3anc 1265 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
161 dvdstr 14330 . . . . . . . 8  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )  e.  ZZ )  ->  ( ( ( ( A Yrm  N ) ^
2 )  ||  (
( A Yrm  N ) ^
3 )  /\  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
162161imp 431 . . . . . . 7  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  (
( A Yrm  N ) ^
3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )  e.  ZZ )  /\  ( ( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 )  /\  ( ( A Yrm  N ) ^ 3 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
16311, 65, 158, 79, 160, 162syl32anc 1273 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
164 dvdssub2 14335 . . . . . 6  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  e.  ZZ  /\  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) )  e.  ZZ )  /\  ( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) ) )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  <->  ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
16511, 142, 157, 163, 164syl31anc 1268 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  <->  ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
166155, 165mpbird 236 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) ) )
167166adantr 467 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) ) )
168 simpr 463 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( N  x.  ( A Yrm  N ) ) 
||  M )
169 simpl1 1009 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  A  e.  ( ZZ>= `  2 )
)
170140adantr 467 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( N  x.  ( A Yrm  N ) )  e.  ZZ )
17123adantr 467 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  M  e.  ZZ )
172 jm2.19 35812 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  ( A Yrm  N
) )  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  x.  ( A Yrm  N ) )  ||  M  <->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm  M ) ) )
173169, 170, 171, 172syl3anc 1265 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( N  x.  ( A Yrm  N
) )  ||  M  <->  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) ) 
||  ( A Yrm  M ) ) )
174168, 173mpbid 214 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm  M ) )
175 dvdstr 14330 . . . 4  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ )  ->  ( ( ( ( A Yrm  N ) ^
2 )  ||  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  /\  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M ) ) )
176175imp 431 . . 3  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  e.  ZZ  /\  ( A Yrm 
M )  e.  ZZ )  /\  ( ( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  /\  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm  M ) ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M ) )
177139, 143, 144, 167, 174, 176syl32anc 1273 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( A Yrm  M ) )
178138, 177impbida 841 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M )  <->  ( N  x.  ( A Yrm  N ) ) 
||  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869    =/= wne 2619   class class class wbr 4421   ` cfv 5599  (class class class)co 6303   CCcc 9539   0cc0 9541   1c1 9542    x. cmul 9546    < clt 9677    <_ cle 9678    - cmin 9862    / cdiv 10271   NNcn 10611   2c2 10661   3c3 10662   NN0cn0 10871   ZZcz 10939   ZZ>=cuz 11161   ^cexp 12273    || cdvds 14298    gcd cgcd 14461   Xrm crmx 35712   Yrm crmy 35713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619  ax-addf 9620  ax-mulf 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-iin 4300  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-of 6543  df-om 6705  df-1st 6805  df-2nd 6806  df-supp 6924  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-2o 7189  df-oadd 7192  df-omul 7193  df-er 7369  df-map 7480  df-pm 7481  df-ixp 7529  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fsupp 7888  df-fi 7929  df-sup 7960  df-inf 7961  df-oi 8029  df-card 8376  df-acn 8379  df-cda 8600  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-10 10678  df-n0 10872  df-z 10940  df-dec 11054  df-uz 11162  df-q 11267  df-rp 11305  df-xneg 11411  df-xadd 11412  df-xmul 11413  df-ioo 11641  df-ioc 11642  df-ico 11643  df-icc 11644  df-fz 11787  df-fzo 11918  df-fl 12029  df-mod 12098  df-seq 12215  df-exp 12274  df-fac 12461  df-bc 12489  df-hash 12517  df-shft 13124  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-limsup 13519  df-clim 13545  df-rlim 13546  df-sum 13746  df-ef 14114  df-sin 14116  df-cos 14117  df-pi 14119  df-dvds 14299  df-gcd 14462  df-prm 14616  df-numer 14677  df-denom 14678  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-hom 15207  df-cco 15208  df-rest 15314  df-topn 15315  df-0g 15333  df-gsum 15334  df-topgen 15335  df-pt 15336  df-prds 15339  df-xrs 15393  df-qtop 15399  df-imas 15400  df-xps 15403  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576  df-mulg 16669  df-cntz 16964  df-cmn 17425  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-fbas 18960  df-fg 18961  df-cnfld 18964  df-top 19913  df-bases 19914  df-topon 19915  df-topsp 19916  df-cld 20026  df-ntr 20027  df-cls 20028  df-nei 20106  df-lp 20144  df-perf 20145  df-cn 20235  df-cnp 20236  df-haus 20323  df-tx 20569  df-hmeo 20762  df-fil 20853  df-fm 20945  df-flim 20946  df-flf 20947  df-xms 21327  df-ms 21328  df-tms 21329  df-cncf 21902  df-limc 22813  df-dv 22814  df-log 23498  df-squarenn 35650  df-pell1qr 35651  df-pell14qr 35652  df-pell1234qr 35653  df-pellfund 35654  df-rmx 35714  df-rmy 35715
This theorem is referenced by:  jm2.27a  35824  jm2.27c  35826
  Copyright terms: Public domain W3C validator