Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.20nn Structured version   Unicode version

Theorem jm2.20nn 30543
Description: Lemma 2.20 of [JonesMatijasevic] p. 696, the "first step down lemma". (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
jm2.20nn  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M )  <->  ( N  x.  ( A Yrm  N ) ) 
||  M ) )

Proof of Theorem jm2.20nn
StepHypRef Expression
1 simp1 996 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  A  e.  ( ZZ>= `  2 )
)
2 nnz 10882 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  ZZ )
323ad2ant3 1019 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  N  e.  ZZ )
4 frmy 30454 . . . . . . . . . . 11  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
54fovcl 6389 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
61, 3, 5syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  ZZ )
76zcnd 10963 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  CC )
87adantr 465 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  e.  CC )
98sqvald 12271 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  =  ( ( A Yrm  N )  x.  ( A Yrm  N ) ) )
10 zsqcl 12202 . . . . . . . . 9  |-  ( ( A Yrm  N )  e.  ZZ  ->  ( ( A Yrm  N ) ^ 2 )  e.  ZZ )
116, 10syl 16 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  e.  ZZ )
1211adantr 465 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  e.  ZZ )
13 frmx 30453 . . . . . . . . . . . 12  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
1413fovcl 6389 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
151, 3, 14syl2anc 661 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Xrm 
N )  e.  NN0 )
1615nn0zd 10960 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Xrm 
N )  e.  ZZ )
1716adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Xrm  N )  e.  ZZ )
187sqvald 12271 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  =  ( ( A Yrm  N )  x.  ( A Yrm  N ) ) )
1918adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  =  ( ( A Yrm  N )  x.  ( A Yrm  N ) ) )
20 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M ) )
2119, 20eqbrtrrd 4469 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm  M ) )
22 nnz 10882 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  M  e.  ZZ )
23223ad2ant2 1018 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  M  e.  ZZ )
244fovcl 6389 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
251, 23, 24syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
M )  e.  ZZ )
26 muldvds1 13865 . . . . . . . . . . . . . 14  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( A Yrm  N )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ )  ->  (
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm  M )  ->  ( A Yrm  N
)  ||  ( A Yrm  M
) ) )
276, 6, 25, 26syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm  M )  ->  ( A Yrm  N
)  ||  ( A Yrm  M
) ) )
2827adantr 465 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm 
M )  ->  ( A Yrm 
N )  ||  ( A Yrm 
M ) ) )
2921, 28mpd 15 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  ||  ( A Yrm  M ) )
30 simpl1 999 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
313adantr 465 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  e.  ZZ )
3223adantr 465 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  M  e.  ZZ )
33 jm2.19 30539 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  ||  M  <->  ( A Yrm  N
)  ||  ( A Yrm  M
) ) )
3430, 31, 32, 33syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  ||  M  <->  ( A Yrm  N )  ||  ( A Yrm 
M ) ) )
3529, 34mpbird 232 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  ||  M )
36 simpl2 1000 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  M  e.  NN )
37 simpl3 1001 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  e.  NN )
38 nndivdvds 13849 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  ||  M  <->  ( M  /  N )  e.  NN ) )
3936, 37, 38syl2anc 661 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  ||  M  <->  ( M  /  N )  e.  NN ) )
4035, 39mpbid 210 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( M  /  N
)  e.  NN )
41 nnm1nn0 10833 . . . . . . . . 9  |-  ( ( M  /  N )  e.  NN  ->  (
( M  /  N
)  -  1 )  e.  NN0 )
4240, 41syl 16 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  -  1 )  e.  NN0 )
43 zexpcl 12145 . . . . . . . 8  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( M  /  N )  -  1 )  e. 
NN0 )  ->  (
( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  e.  ZZ )
4417, 42, 43syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  e.  ZZ )
4540nnzd 10961 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( M  /  N
)  e.  ZZ )
466adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  e.  ZZ )
4745, 46zmulcld 10968 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  ( A Yrm 
N ) )  e.  ZZ )
4825adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  M )  e.  ZZ )
49 nncn 10540 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  M  e.  CC )
50493ad2ant2 1018 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  M  e.  CC )
51 nncn 10540 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  e.  CC )
52513ad2ant3 1019 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  N  e.  CC )
53 nnne0 10564 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  =/=  0 )
54533ad2ant3 1019 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  N  =/=  0 )
5550, 52, 54divcan2d 10318 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  =  M )
5655oveq2d 6298 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  ( N  x.  ( M  /  N ) ) )  =  ( A Yrm  M ) )
5756, 25eqeltrd 2555 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  ( N  x.  ( M  /  N ) ) )  e.  ZZ )
5857adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  ( N  x.  ( M  /  N
) ) )  e.  ZZ )
5944, 46zmulcld 10968 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) )  e.  ZZ )
6045, 59zmulcld 10968 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) )  e.  ZZ )
6158, 60zsubcld 10967 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )
62 3nn0 10809 . . . . . . . . . . . . 13  |-  3  e.  NN0
6362a1i 11 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  3  e.  NN0 )
64 zexpcl 12145 . . . . . . . . . . . 12  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  3  e. 
NN0 )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
656, 63, 64syl2anc 661 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
6665adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 3 )  e.  ZZ )
67 2nn0 10808 . . . . . . . . . . . . 13  |-  2  e.  NN0
6867a1i 11 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  2  e.  NN0 )
69 3z 10893 . . . . . . . . . . . . . 14  |-  3  e.  ZZ
70 2re 10601 . . . . . . . . . . . . . . 15  |-  2  e.  RR
71 3re 10605 . . . . . . . . . . . . . . 15  |-  3  e.  RR
72 2lt3 10699 . . . . . . . . . . . . . . 15  |-  2  <  3
7370, 71, 72ltleii 9703 . . . . . . . . . . . . . 14  |-  2  <_  3
74 2z 10892 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
7574eluz1i 11085 . . . . . . . . . . . . . 14  |-  ( 3  e.  ( ZZ>= `  2
)  <->  ( 3  e.  ZZ  /\  2  <_ 
3 ) )
7669, 73, 75mpbir2an 918 . . . . . . . . . . . . 13  |-  3  e.  ( ZZ>= `  2 )
7776a1i 11 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  3  e.  ( ZZ>= `  2 )
)
78 dvdsexp 13897 . . . . . . . . . . . 12  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  2  e. 
NN0  /\  3  e.  ( ZZ>= `  2 )
)  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 ) )
796, 68, 77, 78syl3anc 1228 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( A Yrm  N ) ^
3 ) )
8079adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 ) )
81 jm2.23 30542 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  ( M  /  N )  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  ( M  /  N
) ) )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )
8230, 31, 40, 81syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 3 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
83 dvdstr 13874 . . . . . . . . . . 11  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  ->  (
( ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  N ) ^ 3 )  /\  ( ( A Yrm  N ) ^ 3 ) 
||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
8483imp 429 . . . . . . . . . 10  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  (
( A Yrm  N ) ^
3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  /\  (
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 )  /\  ( ( A Yrm  N ) ^ 3 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
8512, 66, 61, 80, 82, 84syl32anc 1236 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
86 dvds2sub 13873 . . . . . . . . . 10  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  ->  (
( ( ( A Yrm  N ) ^ 2 ) 
||  ( A Yrm  M )  /\  ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  M )  -  (
( A Yrm  ( N  x.  ( M  /  N
) ) )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) ) ) )
8786imp 429 . . . . . . . . 9  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm 
M )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  /\  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M )  /\  ( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  M )  -  (
( A Yrm  ( N  x.  ( M  /  N
) ) )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
8812, 48, 61, 20, 85, 87syl32anc 1236 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  M )  -  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
8955adantr 465 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  x.  ( M  /  N ) )  =  M )
9089oveq2d 6298 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  ( N  x.  ( M  /  N
) ) )  =  ( A Yrm  M ) )
9190oveq1d 6297 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  =  ( ( A Yrm  M )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
9291oveq2d 6298 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( A Yrm  M )  -  (
( A Yrm  M )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
9325zcnd 10963 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
M )  e.  CC )
9493adantr 465 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  M )  e.  CC )
9560zcnd 10963 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) )  e.  CC )
9694, 95nncand 9931 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  M )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) )
9745zcnd 10963 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( M  /  N
)  e.  CC )
9844zcnd 10963 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  e.  CC )
9997, 98, 8mul12d 9784 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) )  =  ( ( ( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  x.  (
( M  /  N
)  x.  ( A Yrm  N ) ) ) )
10096, 99eqtrd 2508 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  M )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( ( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  x.  (
( M  /  N
)  x.  ( A Yrm  N ) ) ) )
10192, 100eqtrd 2508 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( ( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  x.  (
( M  /  N
)  x.  ( A Yrm  N ) ) ) )
10288, 101breqtrd 4471 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( ( M  /  N )  x.  ( A Yrm  N ) ) ) )
103 gcdcom 14013 . . . . . . . . . . 11  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( A Xrm  N )  e.  ZZ )  ->  ( ( A Yrm  N )  gcd  ( A Xrm  N ) )  =  ( ( A Xrm  N )  gcd  ( A Yrm  N ) ) )
1046, 16, 103syl2anc 661 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  gcd  ( A Xrm  N ) )  =  ( ( A Xrm  N )  gcd  ( A Yrm  N ) ) )
105 jm2.19lem1 30535 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  (
( A Xrm  N )  gcd  ( A Yrm  N ) )  =  1 )
1061, 3, 105syl2anc 661 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Xrm  N )  gcd  ( A Yrm  N ) )  =  1 )
107104, 106eqtrd 2508 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1 )
108107adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1 )
10967a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
2  e.  NN0 )
110 rpexp12i 14118 . . . . . . . . 9  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( A Xrm  N )  e.  ZZ  /\  ( 2  e.  NN0  /\  ( ( M  /  N )  -  1 )  e.  NN0 )
)  ->  ( (
( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1  ->  (
( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) ) )  =  1 ) )
11146, 17, 109, 42, 110syl112anc 1232 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1  ->  ( ( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) ) )  =  1 ) )
112108, 111mpd 15 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) ) )  =  1 )
113 coprmdvds 14098 . . . . . . . 8  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  e.  ZZ  /\  ( ( M  /  N )  x.  ( A Yrm 
N ) )  e.  ZZ )  ->  (
( ( ( A Yrm  N ) ^ 2 ) 
||  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( ( M  /  N )  x.  ( A Yrm  N ) ) )  /\  (
( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) ) )  =  1 )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( M  /  N )  x.  ( A Yrm 
N ) ) ) )
114113imp 429 . . . . . . 7  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  (
( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  e.  ZZ  /\  ( ( M  /  N )  x.  ( A Yrm 
N ) )  e.  ZZ )  /\  (
( ( A Yrm  N ) ^ 2 )  ||  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( ( M  /  N )  x.  ( A Yrm  N ) ) )  /\  ( ( ( A Yrm  N ) ^
2 )  gcd  (
( A Xrm  N ) ^
( ( M  /  N )  -  1 ) ) )  =  1 ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( M  /  N )  x.  ( A Yrm 
N ) ) )
11512, 44, 47, 102, 112, 114syl32anc 1236 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( M  /  N )  x.  ( A Yrm 
N ) ) )
1169, 115eqbrtrrd 4469 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( ( M  /  N )  x.  ( A Yrm  N ) ) )
117 rmy0 30469 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
1181173ad2ant1 1017 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  0 )  =  0 )
119 nngt0 10561 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  0  <  N )
1201193ad2ant3 1019 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  0  <  N )
121 0zd 10872 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  0  e.  ZZ )
122 ltrmy 30494 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  0  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  <  N  <->  ( A Yrm  0 )  <  ( A Yrm  N ) ) )
1231, 121, 3, 122syl3anc 1228 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
0  <  N  <->  ( A Yrm  0 )  <  ( A Yrm  N ) ) )
124120, 123mpbid 210 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  0 )  <  ( A Yrm 
N ) )
125118, 124eqbrtrrd 4469 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  0  <  ( A Yrm  N ) )
126 elnnz 10870 . . . . . . . . 9  |-  ( ( A Yrm  N )  e.  NN  <->  ( ( A Yrm  N )  e.  ZZ  /\  0  < 
( A Yrm  N ) ) )
1276, 125, 126sylanbrc 664 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  NN )
128 nnne0 10564 . . . . . . . 8  |-  ( ( A Yrm  N )  e.  NN  ->  ( A Yrm  N )  =/=  0 )
129127, 128syl 16 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  =/=  0
)
130129adantr 465 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  =/=  0 )
131 dvdsmulcr 13870 . . . . . 6  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( M  /  N )  e.  ZZ  /\  ( ( A Yrm  N )  e.  ZZ  /\  ( A Yrm  N )  =/=  0 ) )  -> 
( ( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  (
( M  /  N
)  x.  ( A Yrm  N ) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
13246, 45, 46, 130, 131syl112anc 1232 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  (
( M  /  N
)  x.  ( A Yrm  N ) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
133116, 132mpbid 210 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  ||  ( M  /  N
) )
13454adantr 465 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  =/=  0 )
135 dvdscmulr 13869 . . . . 5  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( M  /  N )  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( N  x.  ( A Yrm  N ) ) 
||  ( N  x.  ( M  /  N
) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
13646, 45, 31, 134, 135syl112anc 1232 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( N  x.  ( A Yrm  N ) ) 
||  ( N  x.  ( M  /  N
) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
137133, 136mpbird 232 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  x.  ( A Yrm 
N ) )  ||  ( N  x.  ( M  /  N ) ) )
138137, 89breqtrd 4471 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  x.  ( A Yrm 
N ) )  ||  M )
13911adantr 465 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( A Yrm 
N ) ^ 2 )  e.  ZZ )
1403, 6zmulcld 10968 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( N  x.  ( A Yrm  N
) )  e.  ZZ )
1414fovcl 6389 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  ( A Yrm  N
) )  e.  ZZ )  ->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  e.  ZZ )
1421, 140, 141syl2anc 661 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  e.  ZZ )
143142adantr 465 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  e.  ZZ )
14425adantr 465 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( A Yrm  M
)  e.  ZZ )
145 nnm1nn0 10833 . . . . . . . . 9  |-  ( ( A Yrm  N )  e.  NN  ->  ( ( A Yrm  N )  -  1 )  e. 
NN0 )
146127, 145syl 16 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  - 
1 )  e.  NN0 )
147 zexpcl 12145 . . . . . . . 8  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( A Yrm  N )  -  1 )  e.  NN0 )  ->  ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  e.  ZZ )
14816, 146, 147syl2anc 661 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  e.  ZZ )
149 dvdsmul2 13863 . . . . . . 7  |-  ( ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 2 )  e.  ZZ )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) ) )
150148, 11, 149syl2anc 661 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) ) )
15118oveq2d 6298 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) )  =  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N )  x.  ( A Yrm 
N ) ) ) )
152148zcnd 10963 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  e.  CC )
153152, 7, 7mul12d 9784 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N )  x.  ( A Yrm 
N ) ) )  =  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )
154151, 153eqtrd 2508 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) )  =  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )
155150, 154breqtrd 4471 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )
156148, 6zmulcld 10968 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) )  e.  ZZ )
1576, 156zmulcld 10968 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) )  e.  ZZ )
158142, 157zsubcld 10967 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )
159 jm2.23 30542 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  ( A Yrm  N )  e.  NN )  ->  ( ( A Yrm  N ) ^ 3 ) 
||  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ (
( A Yrm  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )
1601, 3, 127, 159syl3anc 1228 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
161 dvdstr 13874 . . . . . . . 8  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )  e.  ZZ )  ->  ( ( ( ( A Yrm  N ) ^
2 )  ||  (
( A Yrm  N ) ^
3 )  /\  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
162161imp 429 . . . . . . 7  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  (
( A Yrm  N ) ^
3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )  e.  ZZ )  /\  ( ( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 )  /\  ( ( A Yrm  N ) ^ 3 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
16311, 65, 158, 79, 160, 162syl32anc 1236 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
164 dvdssub2 13878 . . . . . 6  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  e.  ZZ  /\  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) )  e.  ZZ )  /\  ( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) ) )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  <->  ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
16511, 142, 157, 163, 164syl31anc 1231 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  <->  ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
166155, 165mpbird 232 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) ) )
167166adantr 465 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) ) )
168 simpr 461 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( N  x.  ( A Yrm  N ) ) 
||  M )
169 simpl1 999 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  A  e.  ( ZZ>= `  2 )
)
170140adantr 465 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( N  x.  ( A Yrm  N ) )  e.  ZZ )
17123adantr 465 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  M  e.  ZZ )
172 jm2.19 30539 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  ( A Yrm  N
) )  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  x.  ( A Yrm  N ) )  ||  M  <->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm  M ) ) )
173169, 170, 171, 172syl3anc 1228 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( N  x.  ( A Yrm  N
) )  ||  M  <->  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) ) 
||  ( A Yrm  M ) ) )
174168, 173mpbid 210 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm  M ) )
175 dvdstr 13874 . . . 4  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ )  ->  ( ( ( ( A Yrm  N ) ^
2 )  ||  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  /\  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M ) ) )
176175imp 429 . . 3  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  e.  ZZ  /\  ( A Yrm 
M )  e.  ZZ )  /\  ( ( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  /\  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm  M ) ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M ) )
177139, 143, 144, 167, 174, 176syl32anc 1236 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( A Yrm  M ) )
178138, 177impbida 830 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M )  <->  ( N  x.  ( A Yrm  N ) ) 
||  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   CCcc 9486   0cc0 9488   1c1 9489    x. cmul 9493    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   NNcn 10532   2c2 10581   3c3 10582   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11078   ^cexp 12130    || cdivides 13843    gcd cgcd 13999   Xrm crmx 30440   Yrm crmy 30441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-omul 7132  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-acn 8319  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-sum 13468  df-ef 13661  df-sin 13663  df-cos 13664  df-pi 13666  df-dvds 13844  df-gcd 14000  df-prm 14073  df-numer 14123  df-denom 14124  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-mulg 15861  df-cntz 16150  df-cmn 16596  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-limc 22005  df-dv 22006  df-log 22672  df-squarenn 30381  df-pell1qr 30382  df-pell14qr 30383  df-pell1234qr 30384  df-pellfund 30385  df-rmx 30442  df-rmy 30443
This theorem is referenced by:  jm2.27a  30551  jm2.27c  30553
  Copyright terms: Public domain W3C validator