Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19 Structured version   Unicode version

Theorem jm2.19 31177
Description: Lemma 2.19 of [JonesMatijasevic] p. 696. Transfer divisibility constraints between Y-values and their indices. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Assertion
Ref Expression
jm2.19  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( A Yrm  M
)  ||  ( A Yrm  N
) ) )

Proof of Theorem jm2.19
StepHypRef Expression
1 rmyeq0 31133 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( N  =  0  <->  ( A Yrm  N
)  =  0 ) )
213adant2 1013 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  <->  ( A Yrm  N
)  =  0 ) )
3 0dvds 14091 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
433ad2ant3 1017 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  ||  N  <->  N  = 
0 ) )
5 frmy 31092 . . . . . . . 8  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
65fovcl 6380 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
763adant2 1013 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
8 0dvds 14091 . . . . . 6  |-  ( ( A Yrm  N )  e.  ZZ  ->  ( 0  ||  ( A Yrm 
N )  <->  ( A Yrm  N
)  =  0 ) )
97, 8syl 16 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  ||  ( A Yrm  N
)  <->  ( A Yrm  N )  =  0 ) )
102, 4, 93bitr4d 285 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  ||  N  <->  0  ||  ( A Yrm  N ) ) )
1110adantr 463 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( 0  ||  N  <->  0 
||  ( A Yrm  N ) ) )
12 simpr 459 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  M  =  0 )
1312breq1d 4449 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( M  ||  N  <->  0 
||  N ) )
1412oveq2d 6286 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( A Yrm  M )  =  ( A Yrm  0 ) )
15 simpl1 997 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  A  e.  ( ZZ>= ` 
2 ) )
16 rmy0 31107 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
1715, 16syl 16 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( A Yrm  0 )  =  0 )
1814, 17eqtrd 2495 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( A Yrm  M )  =  0 )
1918breq1d 4449 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( ( A Yrm  M ) 
||  ( A Yrm  N )  <->  0  ||  ( A Yrm  N ) ) )
2011, 13, 193bitr4d 285 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( M  ||  N  <->  ( A Yrm  M )  ||  ( A Yrm 
N ) ) )
215fovcl 6380 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
22213adant3 1014 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
23 dvds0 14086 . . . . . . . 8  |-  ( ( A Yrm  M )  e.  ZZ  ->  ( A Yrm  M )  ||  0 )
2422, 23syl 16 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  ||  0
)
25163ad2ant1 1015 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm  0 )  =  0 )
2624, 25breqtrrd 4465 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  ||  ( A Yrm  0 ) )
27 oveq2 6278 . . . . . . 7  |-  ( ( N  mod  ( abs `  M ) )  =  0  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =  ( A Yrm  0 ) )
2827breq2d 4451 . . . . . 6  |-  ( ( N  mod  ( abs `  M ) )  =  0  ->  ( ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <->  ( A Yrm  M ) 
||  ( A Yrm  0 ) ) )
2926, 28syl5ibrcom 222 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( N  mod  ( abs `  M ) )  =  0  ->  ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
3029adantr 463 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  mod  ( abs `  M ) )  =  0  ->  ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
31 zre 10864 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  RR )
32313ad2ant3 1017 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
3332ad2antrr 723 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  N  e.  RR )
34 zcn 10865 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  M  e.  CC )
35343ad2ant2 1016 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
3635ad2antrr 723 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  M  e.  CC )
37 simplr 753 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  M  =/=  0 )
3836, 37absrpcld 13364 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  M )  e.  RR+ )
39 modlt 11989 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  ( abs `  M )  e.  RR+ )  ->  ( N  mod  ( abs `  M
) )  <  ( abs `  M ) )
4033, 38, 39syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  <  ( abs `  M ) )
41 simpll1 1033 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  A  e.  ( ZZ>= `  2 )
)
42 simpll3 1035 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  N  e.  ZZ )
43 simpll2 1034 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  M  e.  ZZ )
44 nnabscl 13243 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
4543, 37, 44syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  M )  e.  NN )
4642, 45zmodcld 11999 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  e.  NN0 )
47 nn0abscl 13230 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
48473ad2ant2 1016 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M )  e. 
NN0 )
4948ad2antrr 723 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  M )  e.  NN0 )
50 ltrmynn0 31128 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  NN0  /\  ( abs `  M
)  e.  NN0 )  ->  ( ( N  mod  ( abs `  M ) )  <  ( abs `  M )  <->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <  ( A Yrm  ( abs `  M ) ) ) )
5141, 46, 49, 50syl3anc 1226 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( N  mod  ( abs `  M
) )  <  ( abs `  M )  <->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <  ( A Yrm  ( abs `  M ) ) ) )
5240, 51mpbid 210 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <  ( A Yrm  ( abs `  M ) ) )
5346nn0zd 10963 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  e.  ZZ )
54 rmyabs 31138 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  ZZ )  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  =  ( A Yrm  ( abs `  ( N  mod  ( abs `  M
) ) ) ) )
5541, 53, 54syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  =  ( A Yrm  ( abs `  ( N  mod  ( abs `  M
) ) ) ) )
5633, 38modcld 11984 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  e.  RR )
57 modge0 11988 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  ( abs `  M )  e.  RR+ )  ->  0  <_  ( N  mod  ( abs `  M ) ) )
5833, 38, 57syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  0  <_  ( N  mod  ( abs `  M ) ) )
5956, 58absidd 13339 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( N  mod  ( abs `  M ) ) )  =  ( N  mod  ( abs `  M
) ) )
6059oveq2d 6286 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( abs `  ( N  mod  ( abs `  M
) ) ) )  =  ( A Yrm  ( N  mod  ( abs `  M
) ) ) )
6155, 60eqtrd 2495 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  =  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )
62 rmyabs 31138 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( abs `  ( A Yrm  M ) )  =  ( A Yrm  ( abs `  M ) ) )
6341, 43, 62syl2anc 659 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  M ) )  =  ( A Yrm  ( abs `  M ) ) )
6452, 61, 633brtr4d 4469 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  < 
( abs `  ( A Yrm 
M ) ) )
655fovcl 6380 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  ZZ )  ->  ( A Yrm  ( N  mod  ( abs `  M
) ) )  e.  ZZ )
6641, 53, 65syl2anc 659 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  e.  ZZ )
67 nn0abscl 13230 . . . . . . . . . . 11  |-  ( ( A Yrm  ( N  mod  ( abs `  M ) ) )  e.  ZZ  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  e.  NN0 )
6866, 67syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  e. 
NN0 )
6968nn0red 10849 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  e.  RR )
7022ad2antrr 723 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  M
)  e.  ZZ )
71 nn0abscl 13230 . . . . . . . . . . 11  |-  ( ( A Yrm  M )  e.  ZZ  ->  ( abs `  ( A Yrm 
M ) )  e. 
NN0 )
7270, 71syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  M ) )  e.  NN0 )
7372nn0red 10849 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  M ) )  e.  RR )
7469, 73ltnled 9721 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( abs `  ( A Yrm  ( N  mod  ( abs `  M
) ) ) )  <  ( abs `  ( A Yrm 
M ) )  <->  -.  ( abs `  ( A Yrm  M ) )  <_  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) ) )
7564, 74mpbid 210 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  -.  ( abs `  ( A Yrm  M ) )  <_  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
76 simpr 459 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  =/=  0
)
77 rmyeq0 31133 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  ZZ )  ->  ( ( N  mod  ( abs `  M
) )  =  0  <-> 
( A Yrm  ( N  mod  ( abs `  M ) ) )  =  0 ) )
7841, 53, 77syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( N  mod  ( abs `  M
) )  =  0  <-> 
( A Yrm  ( N  mod  ( abs `  M ) ) )  =  0 ) )
7978necon3bid 2712 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( N  mod  ( abs `  M
) )  =/=  0  <->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =/=  0 ) )
8076, 79mpbid 210 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =/=  0 )
81 dvdsleabs2 31168 . . . . . . . 8  |-  ( ( ( A Yrm  M )  e.  ZZ  /\  ( A Yrm  ( N  mod  ( abs `  M ) ) )  e.  ZZ  /\  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =/=  0 )  ->  ( ( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  ->  ( abs `  ( A Yrm 
M ) )  <_ 
( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) ) )
8270, 66, 80, 81syl3anc 1226 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  ->  ( abs `  ( A Yrm  M ) )  <_  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) ) )
8375, 82mtod 177 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  -.  ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )
8483ex 432 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  mod  ( abs `  M ) )  =/=  0  ->  -.  ( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
8584necon4ad 2674 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  ->  ( N  mod  ( abs `  M
) )  =  0 ) )
8630, 85impbid 191 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  mod  ( abs `  M ) )  =  0  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
87 simpl2 998 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  e.  ZZ )
88 simpl3 999 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  N  e.  ZZ )
89 simpr 459 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  =/=  0 )
90 dvdsabsmod0 31170 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  =/=  0 )  ->  ( M  ||  N  <->  ( N  mod  ( abs `  M
) )  =  0 ) )
9187, 88, 89, 90syl3anc 1226 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( M  ||  N  <->  ( N  mod  ( abs `  M
) )  =  0 ) )
92 simpl1 997 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  A  e.  ( ZZ>= `  2 )
)
9332adantr 463 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  N  e.  RR )
94 zre 10864 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  RR )
95943ad2ant2 1016 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
9695adantr 463 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  e.  RR )
97 modabsdifz 31169 . . . . . . 7  |-  ( ( N  e.  RR  /\  M  e.  RR  /\  M  =/=  0 )  ->  (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )
9893, 96, 89, 97syl3anc 1226 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )
9998znegcld 10967 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )
100 jm2.19lem4 31176 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )  ->  ( ( A Yrm  M )  ||  ( A Yrm  N )  <->  ( A Yrm  M ) 
||  ( A Yrm  ( N  +  ( -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) ) ) ) )
10192, 87, 88, 99, 100syl121anc 1231 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  N )  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) ) ) )
10232recnd 9611 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
103102adantr 463 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  N  e.  CC )
10435adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  e.  CC )
105104, 89absrpcld 13364 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( abs `  M )  e.  RR+ )
10693, 105modcld 11984 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  mod  ( abs `  M
) )  e.  RR )
107106recnd 9611 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  mod  ( abs `  M
) )  e.  CC )
108103, 107subcld 9922 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( N  mod  ( abs `  M
) ) )  e.  CC )
109108, 104, 89divcld 10316 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  CC )
110109, 104mulneg1d 10005 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M )  =  -u ( ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M
)  x.  M ) )
111110oveq2d 6286 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  +  ( -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  +  -u (
( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) )
112109, 104mulcld 9605 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M )  e.  CC )
113103, 112negsubd 9928 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  +  -u ( ( ( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  -  ( ( ( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) ) )
114108, 104, 89divcan1d 10317 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M )  =  ( N  -  ( N  mod  ( abs `  M
) ) ) )
115114oveq2d 6286 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  -  ( N  -  ( N  mod  ( abs `  M ) ) ) ) )
116103, 107nncand 9927 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( N  -  ( N  mod  ( abs `  M ) ) ) )  =  ( N  mod  ( abs `  M ) ) )
117115, 116eqtrd 2495 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  mod  ( abs `  M ) ) )
118111, 113, 1173eqtrrd 2500 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  mod  ( abs `  M
) )  =  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) )
119118oveq2d 6286 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =  ( A Yrm  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) ) )
120119breq2d 4451 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) ) ) )
121101, 120bitr4d 256 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  N )  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
12286, 91, 1213bitr4d 285 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( M  ||  N  <->  ( A Yrm  M
)  ||  ( A Yrm  N
) ) )
12320, 122pm2.61dane 2772 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( A Yrm  M
)  ||  ( A Yrm  N
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481    + caddc 9484    x. cmul 9486    < clt 9617    <_ cle 9618    - cmin 9796   -ucneg 9797    / cdiv 10202   NNcn 10531   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11082   RR+crp 11221    mod cmo 11978   abscabs 13152    || cdvds 14073   Yrm crmy 31079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-omul 7127  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-acn 8314  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ioc 11537  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12093  df-exp 12152  df-fac 12339  df-bc 12366  df-hash 12391  df-shft 12985  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-limsup 13379  df-clim 13396  df-rlim 13397  df-sum 13594  df-ef 13888  df-sin 13890  df-cos 13891  df-pi 13893  df-dvds 14074  df-gcd 14232  df-numer 14355  df-denom 14356  df-struct 14721  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-mulr 14801  df-starv 14802  df-sca 14803  df-vsca 14804  df-ip 14805  df-tset 14806  df-ple 14807  df-ds 14809  df-unif 14810  df-hom 14811  df-cco 14812  df-rest 14915  df-topn 14916  df-0g 14934  df-gsum 14935  df-topgen 14936  df-pt 14937  df-prds 14940  df-xrs 14994  df-qtop 14999  df-imas 15000  df-xps 15002  df-mre 15078  df-mrc 15079  df-acs 15081  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-submnd 16169  df-mulg 16262  df-cntz 16557  df-cmn 17002  df-psmet 18609  df-xmet 18610  df-met 18611  df-bl 18612  df-mopn 18613  df-fbas 18614  df-fg 18615  df-cnfld 18619  df-top 19569  df-bases 19571  df-topon 19572  df-topsp 19573  df-cld 19690  df-ntr 19691  df-cls 19692  df-nei 19769  df-lp 19807  df-perf 19808  df-cn 19898  df-cnp 19899  df-haus 19986  df-tx 20232  df-hmeo 20425  df-fil 20516  df-fm 20608  df-flim 20609  df-flf 20610  df-xms 20992  df-ms 20993  df-tms 20994  df-cncf 21551  df-limc 22439  df-dv 22440  df-log 23113  df-squarenn 31019  df-pell1qr 31020  df-pell14qr 31021  df-pell1234qr 31022  df-pellfund 31023  df-rmx 31080  df-rmy 31081
This theorem is referenced by:  jm2.20nn  31181
  Copyright terms: Public domain W3C validator