Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17b Unicode version

Theorem jm2.17b 26916
Description: Weak form of the second half of lemma 2.17 of [JonesMatijasevic] p. 696, allowing induction to start lower. (Contributed by Stefan O'Rear, 15-Oct-2014.)
Assertion
Ref Expression
jm2.17b  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A Yrm  ( N  +  1 ) )  <_  (
( 2  x.  A
) ^ N ) )

Proof of Theorem jm2.17b
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6047 . . . . . 6  |-  ( a  =  0  ->  (
a  +  1 )  =  ( 0  +  1 ) )
21oveq2d 6056 . . . . 5  |-  ( a  =  0  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( 0  +  1 ) ) )
3 oveq2 6048 . . . . 5  |-  ( a  =  0  ->  (
( 2  x.  A
) ^ a )  =  ( ( 2  x.  A ) ^
0 ) )
42, 3breq12d 4185 . . . 4  |-  ( a  =  0  ->  (
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
)  <->  ( A Yrm  ( 0  +  1 ) )  <_  ( ( 2  x.  A ) ^
0 ) ) )
54imbi2d 308 . . 3  |-  ( a  =  0  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A Yrm  ( 0  +  1 ) )  <_ 
( ( 2  x.  A ) ^ 0 ) ) ) )
6 oveq1 6047 . . . . . 6  |-  ( a  =  b  ->  (
a  +  1 )  =  ( b  +  1 ) )
76oveq2d 6056 . . . . 5  |-  ( a  =  b  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( b  +  1 ) ) )
8 oveq2 6048 . . . . 5  |-  ( a  =  b  ->  (
( 2  x.  A
) ^ a )  =  ( ( 2  x.  A ) ^
b ) )
97, 8breq12d 4185 . . . 4  |-  ( a  =  b  ->  (
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
)  <->  ( A Yrm  ( b  +  1 ) )  <_  ( ( 2  x.  A ) ^
b ) ) )
109imbi2d 308 . . 3  |-  ( a  =  b  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A Yrm  ( b  +  1 ) )  <_ 
( ( 2  x.  A ) ^ b
) ) ) )
11 oveq1 6047 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  (
a  +  1 )  =  ( ( b  +  1 )  +  1 ) )
1211oveq2d 6056 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( ( b  +  1 )  +  1 ) ) )
13 oveq2 6048 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  (
( 2  x.  A
) ^ a )  =  ( ( 2  x.  A ) ^
( b  +  1 ) ) )
1412, 13breq12d 4185 . . . 4  |-  ( a  =  ( b  +  1 )  ->  (
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
)  <->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( ( 2  x.  A ) ^
( b  +  1 ) ) ) )
1514imbi2d 308 . . 3  |-  ( a  =  ( b  +  1 )  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_ 
( ( 2  x.  A ) ^ (
b  +  1 ) ) ) ) )
16 oveq1 6047 . . . . . 6  |-  ( a  =  N  ->  (
a  +  1 )  =  ( N  + 
1 ) )
1716oveq2d 6056 . . . . 5  |-  ( a  =  N  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( N  +  1 ) ) )
18 oveq2 6048 . . . . 5  |-  ( a  =  N  ->  (
( 2  x.  A
) ^ a )  =  ( ( 2  x.  A ) ^ N ) )
1917, 18breq12d 4185 . . . 4  |-  ( a  =  N  ->  (
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
)  <->  ( A Yrm  ( N  +  1 ) )  <_  ( ( 2  x.  A ) ^ N ) ) )
2019imbi2d 308 . . 3  |-  ( a  =  N  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A Yrm  ( N  + 
1 ) )  <_ 
( ( 2  x.  A ) ^ N
) ) ) )
21 1le1 9606 . . . 4  |-  1  <_  1
22 0p1e1 10049 . . . . . . 7  |-  ( 0  +  1 )  =  1
2322oveq2i 6051 . . . . . 6  |-  ( A Yrm  ( 0  +  1 ) )  =  ( A Yrm  1 )
24 rmy1 26883 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  1 )  =  1 )
2523, 24syl5eq 2448 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  ( 0  +  1 ) )  =  1 )
26 2re 10025 . . . . . . . 8  |-  2  e.  RR
27 eluzelre 10453 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  RR )
28 remulcl 9031 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  A  e.  RR )  ->  ( 2  x.  A
)  e.  RR )
2926, 27, 28sylancr 645 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  A )  e.  RR )
3029recnd 9070 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  A )  e.  CC )
3130exp0d 11472 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
2  x.  A ) ^ 0 )  =  1 )
3225, 31breq12d 4185 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A Yrm  ( 0  +  1 ) )  <_  (
( 2  x.  A
) ^ 0 )  <->  1  <_  1 ) )
3321, 32mpbiri 225 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  ( 0  +  1 ) )  <_  ( (
2  x.  A ) ^ 0 ) )
34 simpr 448 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
35 nn0z 10260 . . . . . . . . . . 11  |-  ( b  e.  NN0  ->  b  e.  ZZ )
3635adantr 452 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  ZZ )
3736peano2zd 10334 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  +  1 )  e.  ZZ )
38 rmyluc2 26891 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  =  ( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) ) )
3934, 37, 38syl2anc 643 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  =  ( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) ) )
40 rmxypos 26902 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  NN0 )  ->  (
0  <  ( A Xrm  b )  /\  0  <_ 
( A Yrm  b ) ) )
4140simprd 450 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  NN0 )  ->  0  <_  ( A Yrm  b ) )
4241ancoms 440 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
0  <_  ( A Yrm  b ) )
43 nn0re 10186 . . . . . . . . . . . . . 14  |-  ( b  e.  NN0  ->  b  e.  RR )
4443adantr 452 . . . . . . . . . . . . 13  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  RR )
4544recnd 9070 . . . . . . . . . . . 12  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  CC )
46 ax-1cn 9004 . . . . . . . . . . . 12  |-  1  e.  CC
47 pncan 9267 . . . . . . . . . . . 12  |-  ( ( b  e.  CC  /\  1  e.  CC )  ->  ( ( b  +  1 )  -  1 )  =  b )
4845, 46, 47sylancl 644 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( b  +  1 )  -  1 )  =  b )
4948oveq2d 6056 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  - 
1 ) )  =  ( A Yrm  b ) )
5042, 49breqtrrd 4198 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
0  <_  ( A Yrm  ( ( b  +  1 )  -  1 ) ) )
5127adantl 453 . . . . . . . . . . . 12  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  RR )
5226, 51, 28sylancr 645 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  A
)  e.  RR )
53 frmy 26867 . . . . . . . . . . . . . 14  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
5453fovcl 6134 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( b  +  1 ) )  e.  ZZ )
5554zred 10331 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( b  +  1 ) )  e.  RR )
5634, 37, 55syl2anc 643 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  +  1 ) )  e.  RR )
5752, 56remulcld 9072 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  e.  RR )
5853fovcl 6134 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  ZZ )
5958zred 10331 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  RR )
6034, 36, 59syl2anc 643 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  b )  e.  RR )
6149, 60eqeltrd 2478 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  - 
1 ) )  e.  RR )
6257, 61subge02d 9574 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 0  <_  ( A Yrm  ( ( b  +  1 )  -  1 ) )  <->  ( (
( 2  x.  A
)  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) )  <_ 
( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) ) ) )
6350, 62mpbid 202 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) )  <_  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) ) )
6439, 63eqbrtrd 4192 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  <_ 
( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) ) )
65643adant3 977 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) ) )
66 simpl 444 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  NN0 )
6752, 66reexpcld 11495 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A ) ^ b
)  e.  RR )
68 2nn 10089 . . . . . . . . . . . 12  |-  2  e.  NN
69 eluz2b2 10504 . . . . . . . . . . . . 13  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  1  < 
A ) )
7069simplbi 447 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
71 nnmulcl 9979 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN  /\  A  e.  NN )  ->  ( 2  x.  A
)  e.  NN )
7268, 70, 71sylancr 645 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  A )  e.  NN )
7372nngt0d 9999 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  0  <  ( 2  x.  A ) )
7473adantl 453 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  ( 2  x.  A ) )
75 lemul2 9819 . . . . . . . . 9  |-  ( ( ( A Yrm  ( b  +  1 ) )  e.  RR  /\  ( ( 2  x.  A ) ^ b )  e.  RR  /\  ( ( 2  x.  A )  e.  RR  /\  0  <  ( 2  x.  A
) ) )  -> 
( ( A Yrm  ( b  +  1 ) )  <_  ( ( 2  x.  A ) ^
b )  <->  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  <_  ( (
2  x.  A )  x.  ( ( 2  x.  A ) ^
b ) ) ) )
7656, 67, 52, 74, 75syl112anc 1188 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  <_  ( ( 2  x.  A ) ^
b )  <->  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  <_  ( (
2  x.  A )  x.  ( ( 2  x.  A ) ^
b ) ) ) )
7776biimp3a 1283 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  <_  ( (
2  x.  A )  x.  ( ( 2  x.  A ) ^
b ) ) )
7852recnd 9070 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  A
)  e.  CC )
7978, 66expp1d 11479 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A ) ^ (
b  +  1 ) )  =  ( ( ( 2  x.  A
) ^ b )  x.  ( 2  x.  A ) ) )
8067recnd 9070 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A ) ^ b
)  e.  CC )
8180, 78mulcomd 9065 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A ) ^
b )  x.  (
2  x.  A ) )  =  ( ( 2  x.  A )  x.  ( ( 2  x.  A ) ^
b ) ) )
8279, 81eqtrd 2436 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A ) ^ (
b  +  1 ) )  =  ( ( 2  x.  A )  x.  ( ( 2  x.  A ) ^
b ) ) )
83823adant3 977 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( (
2  x.  A ) ^ ( b  +  1 ) )  =  ( ( 2  x.  A )  x.  (
( 2  x.  A
) ^ b ) ) )
8477, 83breqtrrd 4198 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  <_  ( (
2  x.  A ) ^ ( b  +  1 ) ) )
8537peano2zd 10334 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( b  +  1 )  +  1 )  e.  ZZ )
8653fovcl 6134 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
( b  +  1 )  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  ZZ )
8786zred 10331 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
( b  +  1 )  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR )
8834, 85, 87syl2anc 643 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR )
89 peano2nn0 10216 . . . . . . . . . 10  |-  ( b  e.  NN0  ->  ( b  +  1 )  e. 
NN0 )
9089adantr 452 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  +  1 )  e.  NN0 )
9152, 90reexpcld 11495 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A ) ^ (
b  +  1 ) )  e.  RR )
92 letr 9123 . . . . . . . 8  |-  ( ( ( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR  /\  ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  e.  RR  /\  ( ( 2  x.  A ) ^ (
b  +  1 ) )  e.  RR )  ->  ( ( ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  (
( 2  x.  A
)  x.  ( A Yrm  ( b  +  1 ) ) )  /\  (
( 2  x.  A
)  x.  ( A Yrm  ( b  +  1 ) ) )  <_  (
( 2  x.  A
) ^ ( b  +  1 ) ) )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( (
2  x.  A ) ^ ( b  +  1 ) ) ) )
9388, 57, 91, 92syl3anc 1184 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  /\  ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  <_  ( (
2  x.  A ) ^ ( b  +  1 ) ) )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( ( 2  x.  A ) ^
( b  +  1 ) ) ) )
94933adant3 977 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( (
( A Yrm  ( ( b  +  1 )  +  1 ) )  <_ 
( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  /\  ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  <_ 
( ( 2  x.  A ) ^ (
b  +  1 ) ) )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  (
( 2  x.  A
) ^ ( b  +  1 ) ) ) )
9565, 84, 94mp2and 661 . . . . 5  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( (
2  x.  A ) ^ ( b  +  1 ) ) )
96953exp 1152 . . . 4  |-  ( b  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( ( 2  x.  A ) ^
( b  +  1 ) ) ) ) )
9796a2d 24 . . 3  |-  ( b  e.  NN0  ->  ( ( A  e.  ( ZZ>= ` 
2 )  ->  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( A  e.  ( ZZ>= `  2 )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_ 
( ( 2  x.  A ) ^ (
b  +  1 ) ) ) ) )
985, 10, 15, 20, 33, 97nn0ind 10322 . 2  |-  ( N  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  ( N  +  1 ) )  <_  ( (
2  x.  A ) ^ N ) ) )
9998impcom 420 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A Yrm  ( N  +  1 ) )  <_  (
( 2  x.  A
) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   ^cexp 11337   Xrm crmx 26853   Yrm crmy 26854
This theorem is referenced by:  jm2.17c  26917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-numer 13082  df-denom 13083  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-squarenn 26794  df-pell1qr 26795  df-pell14qr 26796  df-pell1234qr 26797  df-pellfund 26798  df-rmx 26855  df-rmy 26856
  Copyright terms: Public domain W3C validator