Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17a Unicode version

Theorem jm2.17a 26915
Description: First half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
jm2.17a  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( 2  x.  A )  -  1 ) ^ N )  <_  ( A Yrm  ( N  +  1 ) ) )

Proof of Theorem jm2.17a
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6048 . . . . 5  |-  ( a  =  0  ->  (
( ( 2  x.  A )  -  1 ) ^ a )  =  ( ( ( 2  x.  A )  -  1 ) ^
0 ) )
2 oveq1 6047 . . . . . 6  |-  ( a  =  0  ->  (
a  +  1 )  =  ( 0  +  1 ) )
32oveq2d 6056 . . . . 5  |-  ( a  =  0  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( 0  +  1 ) ) )
41, 3breq12d 4185 . . . 4  |-  ( a  =  0  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) )  <->  ( ( ( 2  x.  A )  -  1 ) ^
0 )  <_  ( A Yrm  ( 0  +  1 ) ) ) )
54imbi2d 308 . . 3  |-  ( a  =  0  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ 0 )  <_  ( A Yrm  ( 0  +  1 ) ) ) ) )
6 oveq2 6048 . . . . 5  |-  ( a  =  b  ->  (
( ( 2  x.  A )  -  1 ) ^ a )  =  ( ( ( 2  x.  A )  -  1 ) ^
b ) )
7 oveq1 6047 . . . . . 6  |-  ( a  =  b  ->  (
a  +  1 )  =  ( b  +  1 ) )
87oveq2d 6056 . . . . 5  |-  ( a  =  b  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( b  +  1 ) ) )
96, 8breq12d 4185 . . . 4  |-  ( a  =  b  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) )  <->  ( ( ( 2  x.  A )  -  1 ) ^
b )  <_  ( A Yrm  ( b  +  1 ) ) ) )
109imbi2d 308 . . 3  |-  ( a  =  b  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ b
)  <_  ( A Yrm  ( b  +  1 ) ) ) ) )
11 oveq2 6048 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  (
( ( 2  x.  A )  -  1 ) ^ a )  =  ( ( ( 2  x.  A )  -  1 ) ^
( b  +  1 ) ) )
12 oveq1 6047 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  (
a  +  1 )  =  ( ( b  +  1 )  +  1 ) )
1312oveq2d 6056 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( ( b  +  1 )  +  1 ) ) )
1411, 13breq12d 4185 . . . 4  |-  ( a  =  ( b  +  1 )  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) )  <->  ( ( ( 2  x.  A )  -  1 ) ^
( b  +  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) ) )
1514imbi2d 308 . . 3  |-  ( a  =  ( b  +  1 )  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ (
b  +  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) ) ) )
16 oveq2 6048 . . . . 5  |-  ( a  =  N  ->  (
( ( 2  x.  A )  -  1 ) ^ a )  =  ( ( ( 2  x.  A )  -  1 ) ^ N ) )
17 oveq1 6047 . . . . . 6  |-  ( a  =  N  ->  (
a  +  1 )  =  ( N  + 
1 ) )
1817oveq2d 6056 . . . . 5  |-  ( a  =  N  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( N  +  1 ) ) )
1916, 18breq12d 4185 . . . 4  |-  ( a  =  N  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) )  <->  ( ( ( 2  x.  A )  -  1 ) ^ N )  <_  ( A Yrm  ( N  +  1 ) ) ) )
2019imbi2d 308 . . 3  |-  ( a  =  N  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ N
)  <_  ( A Yrm  ( N  +  1 ) ) ) ) )
21 1le1 9606 . . . . 5  |-  1  <_  1
2221a1i 11 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <_  1 )
23 2cn 10026 . . . . . . 7  |-  2  e.  CC
24 eluzelz 10452 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
2524zcnd 10332 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  CC )
26 mulcl 9030 . . . . . . 7  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  A
)  e.  CC )
2723, 25, 26sylancr 645 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  A )  e.  CC )
28 ax-1cn 9004 . . . . . 6  |-  1  e.  CC
29 subcl 9261 . . . . . 6  |-  ( ( ( 2  x.  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( 2  x.  A )  -  1 )  e.  CC )
3027, 28, 29sylancl 644 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
2  x.  A )  -  1 )  e.  CC )
3130exp0d 11472 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( 2  x.  A
)  -  1 ) ^ 0 )  =  1 )
32 0p1e1 10049 . . . . . 6  |-  ( 0  +  1 )  =  1
3332oveq2i 6051 . . . . 5  |-  ( A Yrm  ( 0  +  1 ) )  =  ( A Yrm  1 )
34 rmy1 26883 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  1 )  =  1 )
3533, 34syl5eq 2448 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  ( 0  +  1 ) )  =  1 )
3622, 31, 353brtr4d 4202 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( 2  x.  A
)  -  1 ) ^ 0 )  <_ 
( A Yrm  ( 0  +  1 ) ) )
37 2re 10025 . . . . . . . . . 10  |-  2  e.  RR
38 eluzelre 10453 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  RR )
3938adantl 453 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  RR )
40 remulcl 9031 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  A  e.  RR )  ->  ( 2  x.  A
)  e.  RR )
4137, 39, 40sylancr 645 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  A
)  e.  RR )
42 1re 9046 . . . . . . . . 9  |-  1  e.  RR
43 resubcl 9321 . . . . . . . . 9  |-  ( ( ( 2  x.  A
)  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  A )  -  1 )  e.  RR )
4441, 42, 43sylancl 644 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A )  -  1 )  e.  RR )
45 peano2nn0 10216 . . . . . . . . 9  |-  ( b  e.  NN0  ->  ( b  +  1 )  e. 
NN0 )
4645adantr 452 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  +  1 )  e.  NN0 )
4744, 46reexpcld 11495 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ (
b  +  1 ) )  e.  RR )
48473adant3 977 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ ( b  +  1 ) )  e.  RR )
49 simpr 448 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
50 nn0z 10260 . . . . . . . . . . 11  |-  ( b  e.  NN0  ->  b  e.  ZZ )
5150adantr 452 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  ZZ )
5251peano2zd 10334 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  +  1 )  e.  ZZ )
53 frmy 26867 . . . . . . . . . . 11  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
5453fovcl 6134 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( b  +  1 ) )  e.  ZZ )
5554zred 10331 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( b  +  1 ) )  e.  RR )
5649, 52, 55syl2anc 643 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  +  1 ) )  e.  RR )
5756, 44remulcld 9072 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) )  e.  RR )
58573adant3 977 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( ( A Yrm  ( b  +  1 ) )  x.  (
( 2  x.  A
)  -  1 ) )  e.  RR )
5952peano2zd 10334 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( b  +  1 )  +  1 )  e.  ZZ )
6053fovcl 6134 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
( b  +  1 )  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  ZZ )
6160zred 10331 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
( b  +  1 )  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR )
6249, 59, 61syl2anc 643 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR )
63623adant3 977 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR )
64303ad2ant2 979 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
2  x.  A )  -  1 )  e.  CC )
65 simp1 957 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  b  e.  NN0 )
6664, 65expp1d 11479 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ ( b  +  1 ) )  =  ( ( ( ( 2  x.  A )  -  1 ) ^
b )  x.  (
( 2  x.  A
)  -  1 ) ) )
67 simpl 444 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  NN0 )
6844, 67reexpcld 11495 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ b
)  e.  RR )
69 2nn 10089 . . . . . . . . . . . . 13  |-  2  e.  NN
70 eluz2b2 10504 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  1  < 
A ) )
7170simplbi 447 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
7271adantl 453 . . . . . . . . . . . . 13  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  NN )
73 nnmulcl 9979 . . . . . . . . . . . . 13  |-  ( ( 2  e.  NN  /\  A  e.  NN )  ->  ( 2  x.  A
)  e.  NN )
7469, 72, 73sylancr 645 . . . . . . . . . . . 12  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  A
)  e.  NN )
75 nnm1nn0 10217 . . . . . . . . . . . 12  |-  ( ( 2  x.  A )  e.  NN  ->  (
( 2  x.  A
)  -  1 )  e.  NN0 )
76 nn0ge0 10203 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  A
)  -  1 )  e.  NN0  ->  0  <_ 
( ( 2  x.  A )  -  1 ) )
7774, 75, 763syl 19 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
0  <_  ( (
2  x.  A )  -  1 ) )
7844, 77jca 519 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  - 
1 )  e.  RR  /\  0  <_  ( (
2  x.  A )  -  1 ) ) )
7968, 56, 783jca 1134 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( ( 2  x.  A )  -  1 ) ^
b )  e.  RR  /\  ( A Yrm  ( b  +  1 ) )  e.  RR  /\  ( ( ( 2  x.  A
)  -  1 )  e.  RR  /\  0  <_  ( ( 2  x.  A )  -  1 ) ) ) )
80793adant3 977 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( ( 2  x.  A )  -  1 ) ^ b )  e.  RR  /\  ( A Yrm  ( b  +  1 ) )  e.  RR  /\  ( ( ( 2  x.  A )  - 
1 )  e.  RR  /\  0  <_  ( (
2  x.  A )  -  1 ) ) ) )
81 simp3 959 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ b )  <_ 
( A Yrm  ( b  +  1 ) ) )
82 lemul1a 9820 . . . . . . . 8  |-  ( ( ( ( ( ( 2  x.  A )  -  1 ) ^
b )  e.  RR  /\  ( A Yrm  ( b  +  1 ) )  e.  RR  /\  ( ( ( 2  x.  A
)  -  1 )  e.  RR  /\  0  <_  ( ( 2  x.  A )  -  1 ) ) )  /\  ( ( ( 2  x.  A )  - 
1 ) ^ b
)  <_  ( A Yrm  ( b  +  1 ) ) )  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ b
)  x.  ( ( 2  x.  A )  -  1 ) )  <_  ( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  -  1 ) ) )
8380, 81, 82syl2anc 643 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( ( 2  x.  A )  -  1 ) ^ b )  x.  ( ( 2  x.  A )  - 
1 ) )  <_ 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) ) )
8466, 83eqbrtrd 4192 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ ( b  +  1 ) )  <_ 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) ) )
85 nn0cn 10187 . . . . . . . . . . . . 13  |-  ( b  e.  NN0  ->  b  e.  CC )
8685adantr 452 . . . . . . . . . . . 12  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  CC )
87 pncan 9267 . . . . . . . . . . . 12  |-  ( ( b  e.  CC  /\  1  e.  CC )  ->  ( ( b  +  1 )  -  1 )  =  b )
8886, 28, 87sylancl 644 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( b  +  1 )  -  1 )  =  b )
8988oveq2d 6056 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  - 
1 ) )  =  ( A Yrm  b ) )
9053fovcl 6134 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  ZZ )
9190zred 10331 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  RR )
9249, 51, 91syl2anc 643 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  b )  e.  RR )
9389, 92eqeltrd 2478 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  - 
1 ) )  e.  RR )
94 remulcl 9031 . . . . . . . . . 10  |-  ( ( ( A Yrm  ( b  +  1 ) )  e.  RR  /\  1  e.  RR )  ->  (
( A Yrm  ( b  +  1 ) )  x.  1 )  e.  RR )
9556, 42, 94sylancl 644 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  1 )  e.  RR )
9641, 56remulcld 9072 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  e.  RR )
97 nn0re 10186 . . . . . . . . . . . . 13  |-  ( b  e.  NN0  ->  b  e.  RR )
9897adantr 452 . . . . . . . . . . . 12  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  RR )
9998lep1d 9898 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  <_  ( b  +  1 ) )
100 lermy 26910 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ  /\  ( b  +  1 )  e.  ZZ )  ->  (
b  <_  ( b  +  1 )  <->  ( A Yrm  b )  <_  ( A Yrm  ( b  +  1 ) ) ) )
10149, 51, 52, 100syl3anc 1184 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  <_  (
b  +  1 )  <-> 
( A Yrm  b )  <_ 
( A Yrm  ( b  +  1 ) ) ) )
10299, 101mpbid 202 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  b )  <_ 
( A Yrm  ( b  +  1 ) ) )
10356recnd 9070 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  +  1 ) )  e.  CC )
104103mulid1d 9061 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  1 )  =  ( A Yrm  ( b  +  1 ) ) )
105102, 89, 1043brtr4d 4202 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  - 
1 ) )  <_ 
( ( A Yrm  ( b  +  1 ) )  x.  1 ) )
10693, 95, 96, 105lesub2dd 9599 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( ( A Yrm  ( b  +  1 ) )  x.  1 ) )  <_  ( (
( 2  x.  A
)  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) ) )
10741recnd 9070 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  A
)  e.  CC )
10828a1i 11 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
1  e.  CC )
109103, 107, 108subdid 9445 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) )  =  ( ( ( A Yrm  ( b  +  1 ) )  x.  ( 2  x.  A ) )  -  ( ( A Yrm  ( b  +  1 ) )  x.  1 ) ) )
110103, 107mulcomd 9065 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( 2  x.  A ) )  =  ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) ) )
111110oveq1d 6055 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( A Yrm  ( b  +  1 ) )  x.  ( 2  x.  A ) )  -  ( ( A Yrm  ( b  +  1 ) )  x.  1 ) )  =  ( ( ( 2  x.  A
)  x.  ( A Yrm  ( b  +  1 ) ) )  -  (
( A Yrm  ( b  +  1 ) )  x.  1 ) ) )
112109, 111eqtrd 2436 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) )  =  ( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( ( A Yrm  ( b  +  1 ) )  x.  1 ) ) )
113 rmyluc2 26891 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  =  ( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) ) )
11449, 52, 113syl2anc 643 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  =  ( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) ) )
115106, 112, 1143brtr4d 4202 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) )  <_ 
( A Yrm  ( ( b  +  1 )  +  1 ) ) )
1161153adant3 977 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( ( A Yrm  ( b  +  1 ) )  x.  (
( 2  x.  A
)  -  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) )
11748, 58, 63, 84, 116letrd 9183 . . . . 5  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ ( b  +  1 ) )  <_ 
( A Yrm  ( ( b  +  1 )  +  1 ) ) )
1181173exp 1152 . . . 4  |-  ( b  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) )  ->  ( ( ( 2  x.  A )  -  1 ) ^
( b  +  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) ) ) )
119118a2d 24 . . 3  |-  ( b  e.  NN0  ->  ( ( A  e.  ( ZZ>= ` 
2 )  ->  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ (
b  +  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) ) ) )
1205, 10, 15, 20, 36, 119nn0ind 10322 . 2  |-  ( N  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( 2  x.  A
)  -  1 ) ^ N )  <_ 
( A Yrm  ( N  + 
1 ) ) ) )
121120impcom 420 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( 2  x.  A )  -  1 ) ^ N )  <_  ( A Yrm  ( N  +  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   ^cexp 11337   Yrm crmy 26854
This theorem is referenced by:  jm3.1lem1  26978
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-numer 13082  df-denom 13083  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-squarenn 26794  df-pell1qr 26795  df-pell14qr 26796  df-pell1234qr 26797  df-pellfund 26798  df-rmx 26855  df-rmy 26856
  Copyright terms: Public domain W3C validator