Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.16nn0 Structured version   Unicode version

Theorem jm2.16nn0 30578
Description: Lemma 2.16 of [JonesMatijasevic] p. 695. This may be regarded as a special case of jm2.15nn0 30577 if Yrm is redefined as described in rmyluc 30505. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.16nn0  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  N )  -  N ) )

Proof of Theorem jm2.16nn0
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 11091 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
2 peano2zm 10906 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
31, 2syl 16 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  e.  ZZ )
4 0z 10875 . . . . 5  |-  0  e.  ZZ
5 congid 30541 . . . . 5  |-  ( ( ( A  -  1 )  e.  ZZ  /\  0  e.  ZZ )  ->  ( A  -  1 )  ||  ( 0  -  0 ) )
63, 4, 5sylancl 662 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( 0  -  0 ) )
7 rmy0 30497 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
87oveq1d 6299 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A Yrm  0 )  -  0 )  =  ( 0  -  0 ) )
96, 8breqtrrd 4473 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( ( A Yrm  0 )  -  0 ) )
10 1z 10894 . . . . 5  |-  1  e.  ZZ
11 congid 30541 . . . . 5  |-  ( ( ( A  -  1 )  e.  ZZ  /\  1  e.  ZZ )  ->  ( A  -  1 )  ||  ( 1  -  1 ) )
123, 10, 11sylancl 662 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( 1  -  1 ) )
13 rmy1 30498 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  1 )  =  1 )
1413oveq1d 6299 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A Yrm  1 )  -  1 )  =  ( 1  -  1 ) )
1512, 14breqtrrd 4473 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( ( A Yrm  1 )  -  1 ) )
16 pm3.43 860 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) ) )  /\  ( A  e.  ( ZZ>= ` 
2 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  e.  ( ZZ>= ` 
2 )  ->  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) ) )
171adantl 466 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ZZ )
1817, 2syl 16 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A  -  1 )  e.  ZZ )
19 eluzel2 11087 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  2  e.  ZZ )
2019adantl 466 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
2  e.  ZZ )
21 simpr 461 . . . . . . . . . . . . 13  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
22 nnz 10886 . . . . . . . . . . . . . 14  |-  ( b  e.  NN  ->  b  e.  ZZ )
2322adantr 465 . . . . . . . . . . . . 13  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  ZZ )
24 frmy 30482 . . . . . . . . . . . . . 14  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
2524fovcl 6391 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  ZZ )
2621, 23, 25syl2anc 661 . . . . . . . . . . . 12  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  b )  e.  ZZ )
2726, 17zmulcld 10972 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  b )  x.  A )  e.  ZZ )
2820, 27zmulcld 10972 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  (
( A Yrm  b )  x.  A ) )  e.  ZZ )
29 zmulcl 10911 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  1  e.  ZZ )  ->  ( b  x.  1 )  e.  ZZ )
3023, 10, 29sylancl 662 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  x.  1 )  e.  ZZ )
3120, 30zmulcld 10972 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  (
b  x.  1 ) )  e.  ZZ )
3218, 28, 313jca 1176 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  - 
1 )  e.  ZZ  /\  ( 2  x.  (
( A Yrm  b )  x.  A ) )  e.  ZZ  /\  ( 2  x.  ( b  x.  1 ) )  e.  ZZ ) )
33323adant3 1016 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A  -  1 )  e.  ZZ  /\  (
2  x.  ( ( A Yrm  b )  x.  A
) )  e.  ZZ  /\  ( 2  x.  (
b  x.  1 ) )  e.  ZZ ) )
34 peano2zm 10906 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  (
b  -  1 )  e.  ZZ )
3523, 34syl 16 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  -  1 )  e.  ZZ )
3624fovcl 6391 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  -  1 )  e.  ZZ )  -> 
( A Yrm  ( b  - 
1 ) )  e.  ZZ )
3721, 35, 36syl2anc 661 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  - 
1 ) )  e.  ZZ )
3837, 35jca 532 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  -  1 ) )  e.  ZZ  /\  (
b  -  1 )  e.  ZZ ) )
39383adant3 1016 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A Yrm  ( b  -  1 ) )  e.  ZZ  /\  ( b  -  1 )  e.  ZZ ) )
4018, 20, 203jca 1176 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  - 
1 )  e.  ZZ  /\  2  e.  ZZ  /\  2  e.  ZZ )
)
41403adant3 1016 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A  -  1 )  e.  ZZ  /\  2  e.  ZZ  /\  2  e.  ZZ ) )
4227, 30jca 532 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( A Yrm  b )  x.  A )  e.  ZZ  /\  (
b  x.  1 )  e.  ZZ ) )
43423adant3 1016 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( (
( A Yrm  b )  x.  A )  e.  ZZ  /\  ( b  x.  1 )  e.  ZZ ) )
44 congid 30541 . . . . . . . . . . 11  |-  ( ( ( A  -  1 )  e.  ZZ  /\  2  e.  ZZ )  ->  ( A  -  1 )  ||  ( 2  -  2 ) )
4518, 20, 44syl2anc 661 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A  -  1 )  ||  ( 2  -  2 ) )
46453adant3 1016 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( 2  -  2 ) )
4718, 26, 233jca 1176 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  - 
1 )  e.  ZZ  /\  ( A Yrm  b )  e.  ZZ  /\  b  e.  ZZ ) )
48473adant3 1016 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A  -  1 )  e.  ZZ  /\  ( A Yrm  b )  e.  ZZ  /\  b  e.  ZZ ) )
4910a1i 11 . . . . . . . . . . . 12  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
1  e.  ZZ )
5017, 49jca 532 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A  e.  ZZ  /\  1  e.  ZZ ) )
51503adant3 1016 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  e.  ZZ  /\  1  e.  ZZ ) )
52 simp3r 1025 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) )
53 iddvds 13858 . . . . . . . . . . . 12  |-  ( ( A  -  1 )  e.  ZZ  ->  ( A  -  1 ) 
||  ( A  - 
1 ) )
5418, 53syl 16 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A  -  1 )  ||  ( A  -  1 ) )
55543adant3 1016 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( A  -  1
) )
56 congmul 30537 . . . . . . . . . 10  |-  ( ( ( ( A  - 
1 )  e.  ZZ  /\  ( A Yrm  b )  e.  ZZ  /\  b  e.  ZZ )  /\  ( A  e.  ZZ  /\  1  e.  ZZ )  /\  (
( A  -  1 )  ||  ( ( A Yrm  b )  -  b
)  /\  ( A  -  1 )  ||  ( A  -  1
) ) )  -> 
( A  -  1 )  ||  ( ( ( A Yrm  b )  x.  A )  -  (
b  x.  1 ) ) )
5748, 51, 52, 55, 56syl112anc 1232 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( ( A Yrm  b )  x.  A )  -  ( b  x.  1 ) ) )
58 congmul 30537 . . . . . . . . 9  |-  ( ( ( ( A  - 
1 )  e.  ZZ  /\  2  e.  ZZ  /\  2  e.  ZZ )  /\  ( ( ( A Yrm  b )  x.  A )  e.  ZZ  /\  (
b  x.  1 )  e.  ZZ )  /\  ( ( A  - 
1 )  ||  (
2  -  2 )  /\  ( A  - 
1 )  ||  (
( ( A Yrm  b )  x.  A )  -  ( b  x.  1 ) ) ) )  ->  ( A  - 
1 )  ||  (
( 2  x.  (
( A Yrm  b )  x.  A ) )  -  ( 2  x.  (
b  x.  1 ) ) ) )
5941, 43, 46, 57, 58syl112anc 1232 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( 2  x.  ( b  x.  1 ) ) ) )
60 simp3l 1024 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  ( b  - 
1 ) ) )
61 congsub 30540 . . . . . . . 8  |-  ( ( ( ( A  - 
1 )  e.  ZZ  /\  ( 2  x.  (
( A Yrm  b )  x.  A ) )  e.  ZZ  /\  ( 2  x.  ( b  x.  1 ) )  e.  ZZ )  /\  (
( A Yrm  ( b  - 
1 ) )  e.  ZZ  /\  ( b  -  1 )  e.  ZZ )  /\  (
( A  -  1 )  ||  ( ( 2  x.  ( ( A Yrm  b )  x.  A
) )  -  (
2  x.  ( b  x.  1 ) ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  ( b  - 
1 ) ) ) )  ->  ( A  -  1 )  ||  ( ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) )  -  (
( 2  x.  (
b  x.  1 ) )  -  ( b  -  1 ) ) ) )
6233, 39, 59, 60, 61syl112anc 1232 . . . . . . 7  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) )  -  (
( 2  x.  (
b  x.  1 ) )  -  ( b  -  1 ) ) ) )
63 rmyluc 30505 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  ( b  +  1 ) )  =  ( ( 2  x.  (
( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  - 
1 ) ) ) )
6421, 23, 63syl2anc 661 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  +  1 ) )  =  ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) ) )
65 nncn 10544 . . . . . . . . . . . . . . 15  |-  ( b  e.  NN  ->  b  e.  CC )
6665mulid1d 9613 . . . . . . . . . . . . . 14  |-  ( b  e.  NN  ->  (
b  x.  1 )  =  b )
6766oveq2d 6300 . . . . . . . . . . . . 13  |-  ( b  e.  NN  ->  (
2  x.  ( b  x.  1 ) )  =  ( 2  x.  b ) )
68652timesd 10781 . . . . . . . . . . . . 13  |-  ( b  e.  NN  ->  (
2  x.  b )  =  ( b  +  b ) )
6967, 68eqtrd 2508 . . . . . . . . . . . 12  |-  ( b  e.  NN  ->  (
2  x.  ( b  x.  1 ) )  =  ( b  +  b ) )
7069oveq1d 6299 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  (
( 2  x.  (
b  x.  1 ) )  -  ( b  -  1 ) )  =  ( ( b  +  b )  -  ( b  -  1 ) ) )
71 ax-1cn 9550 . . . . . . . . . . . . 13  |-  1  e.  CC
7271a1i 11 . . . . . . . . . . . 12  |-  ( b  e.  NN  ->  1  e.  CC )
7365, 65, 72pnncand 9969 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  (
( b  +  b )  -  ( b  -  1 ) )  =  ( b  +  1 ) )
7470, 73eqtr2d 2509 . . . . . . . . . 10  |-  ( b  e.  NN  ->  (
b  +  1 )  =  ( ( 2  x.  ( b  x.  1 ) )  -  ( b  -  1 ) ) )
7574adantr 465 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  +  1 )  =  ( ( 2  x.  ( b  x.  1 ) )  -  ( b  - 
1 ) ) )
7664, 75oveq12d 6302 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) )  =  ( ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) )  -  (
( 2  x.  (
b  x.  1 ) )  -  ( b  -  1 ) ) ) )
77763adant3 1016 . . . . . . 7  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A Yrm  ( b  +  1 ) )  -  (
b  +  1 ) )  =  ( ( ( 2  x.  (
( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  - 
1 ) ) )  -  ( ( 2  x.  ( b  x.  1 ) )  -  ( b  -  1 ) ) ) )
7862, 77breqtrrd 4473 . . . . . 6  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) )
79783exp 1195 . . . . 5  |-  ( b  e.  NN  ->  ( A  e.  ( ZZ>= ` 
2 )  ->  (
( ( A  - 
1 )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( b  -  1 ) )  /\  ( A  -  1 ) 
||  ( ( A Yrm  b )  -  b ) )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) ) ) )
8079a2d 26 . . . 4  |-  ( b  e.  NN  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( A  - 
1 )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( b  -  1 ) )  /\  ( A  -  1 ) 
||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  e.  ( ZZ>= ` 
2 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) ) ) )
8116, 80syl5 32 . . 3  |-  ( b  e.  NN  ->  (
( ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) ) )  /\  ( A  e.  ( ZZ>= ` 
2 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  e.  ( ZZ>= ` 
2 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) ) ) )
82 oveq2 6292 . . . . . 6  |-  ( a  =  0  ->  ( A Yrm  a )  =  ( A Yrm  0 ) )
83 id 22 . . . . . 6  |-  ( a  =  0  ->  a  =  0 )
8482, 83oveq12d 6302 . . . . 5  |-  ( a  =  0  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  0 )  - 
0 ) )
8584breq2d 4459 . . . 4  |-  ( a  =  0  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  0 )  - 
0 ) ) )
8685imbi2d 316 . . 3  |-  ( a  =  0  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  0 )  -  0 ) ) ) )
87 oveq2 6292 . . . . . 6  |-  ( a  =  1  ->  ( A Yrm  a )  =  ( A Yrm  1 ) )
88 id 22 . . . . . 6  |-  ( a  =  1  ->  a  =  1 )
8987, 88oveq12d 6302 . . . . 5  |-  ( a  =  1  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  1 )  - 
1 ) )
9089breq2d 4459 . . . 4  |-  ( a  =  1  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  1 )  - 
1 ) ) )
9190imbi2d 316 . . 3  |-  ( a  =  1  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  1 )  -  1 ) ) ) )
92 oveq2 6292 . . . . . 6  |-  ( a  =  ( b  - 
1 )  ->  ( A Yrm  a )  =  ( A Yrm  ( b  -  1 ) ) )
93 id 22 . . . . . 6  |-  ( a  =  ( b  - 
1 )  ->  a  =  ( b  - 
1 ) )
9492, 93oveq12d 6302 . . . . 5  |-  ( a  =  ( b  - 
1 )  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  ( b  - 
1 ) )  -  ( b  -  1 ) ) )
9594breq2d 4459 . . . 4  |-  ( a  =  ( b  - 
1 )  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( b  -  1 ) ) ) )
9695imbi2d 316 . . 3  |-  ( a  =  ( b  - 
1 )  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) ) ) ) )
97 oveq2 6292 . . . . . 6  |-  ( a  =  b  ->  ( A Yrm  a )  =  ( A Yrm  b ) )
98 id 22 . . . . . 6  |-  ( a  =  b  ->  a  =  b )
9997, 98oveq12d 6302 . . . . 5  |-  ( a  =  b  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  b )  -  b ) )
10099breq2d 4459 . . . 4  |-  ( a  =  b  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  b )  -  b ) ) )
101100imbi2d 316 . . 3  |-  ( a  =  b  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b
) ) ) )
102 oveq2 6292 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  ( A Yrm  a )  =  ( A Yrm  ( b  +  1 ) ) )
103 id 22 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  a  =  ( b  +  1 ) )
104102, 103oveq12d 6302 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) )
105104breq2d 4459 . . . 4  |-  ( a  =  ( b  +  1 )  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) ) )
106105imbi2d 316 . . 3  |-  ( a  =  ( b  +  1 )  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  +  1 ) )  -  (
b  +  1 ) ) ) ) )
107 oveq2 6292 . . . . . 6  |-  ( a  =  N  ->  ( A Yrm  a )  =  ( A Yrm  N ) )
108 id 22 . . . . . 6  |-  ( a  =  N  ->  a  =  N )
109107, 108oveq12d 6302 . . . . 5  |-  ( a  =  N  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  N )  -  N ) )
110109breq2d 4459 . . . 4  |-  ( a  =  N  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  N )  -  N ) ) )
111110imbi2d 316 . . 3  |-  ( a  =  N  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  N )  -  N
) ) ) )
1129, 15, 81, 86, 91, 96, 101, 106, 1112nn0ind 30513 . 2  |-  ( N  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( ( A Yrm  N )  -  N ) ) )
113112impcom 430 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  N )  -  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   CCcc 9490   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497    - cmin 9805   NNcn 10536   2c2 10585   NN0cn0 10795   ZZcz 10864   ZZ>=cuz 11082    || cdivides 13847   Yrm crmy 30469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-omul 7135  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-acn 8323  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-sum 13472  df-ef 13665  df-sin 13667  df-cos 13668  df-pi 13670  df-dvds 13848  df-gcd 14004  df-numer 14127  df-denom 14128  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034  df-log 22700  df-squarenn 30409  df-pell1qr 30410  df-pell14qr 30411  df-pell1234qr 30412  df-pellfund 30413  df-rmx 30470  df-rmy 30471
This theorem is referenced by:  jm2.27a  30579  jm2.27c  30581
  Copyright terms: Public domain W3C validator