Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.16nn0 Unicode version

Theorem jm2.16nn0 26263
Description: Lemma 2.16 of [JonesMatijasevic] p. 695. This may be regarded as a special case of jm2.15nn0 26262 if Yrm is redefined as described in rmyluc 26188. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.16nn0  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  N )  -  N ) )

Proof of Theorem jm2.16nn0
StepHypRef Expression
1 eluzelz 10117 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
2 peano2zm 9941 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
31, 2syl 17 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  e.  ZZ )
4 0z 9914 . . . . 5  |-  0  e.  ZZ
5 congid 26224 . . . . 5  |-  ( ( ( A  -  1 )  e.  ZZ  /\  0  e.  ZZ )  ->  ( A  -  1 )  ||  ( 0  -  0 ) )
63, 4, 5sylancl 646 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( 0  -  0 ) )
7 rmy0 26180 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
87oveq1d 5725 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A Yrm  0 )  -  0 )  =  ( 0  -  0 ) )
96, 8breqtrrd 3946 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( ( A Yrm  0 )  -  0 ) )
10 1z 9932 . . . . 5  |-  1  e.  ZZ
11 congid 26224 . . . . 5  |-  ( ( ( A  -  1 )  e.  ZZ  /\  1  e.  ZZ )  ->  ( A  -  1 )  ||  ( 1  -  1 ) )
123, 10, 11sylancl 646 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( 1  -  1 ) )
13 rmy1 26181 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  1 )  =  1 )
1413oveq1d 5725 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A Yrm  1 )  -  1 )  =  ( 1  -  1 ) )
1512, 14breqtrrd 3946 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( ( A Yrm  1 )  -  1 ) )
16 pm3.43 835 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) ) )  /\  ( A  e.  ( ZZ>= ` 
2 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  e.  ( ZZ>= ` 
2 )  ->  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) ) )
171adantl 454 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ZZ )
1817, 2syl 17 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A  -  1 )  e.  ZZ )
19 eluzel2 10114 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  2  e.  ZZ )
2019adantl 454 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
2  e.  ZZ )
21 simpr 449 . . . . . . . . . . . . 13  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
22 nnz 9924 . . . . . . . . . . . . . 14  |-  ( b  e.  NN  ->  b  e.  ZZ )
2322adantr 453 . . . . . . . . . . . . 13  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  ZZ )
24 frmy 26165 . . . . . . . . . . . . . 14  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
2524fovcl 5801 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  ZZ )
2621, 23, 25syl2anc 645 . . . . . . . . . . . 12  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  b )  e.  ZZ )
2726, 17zmulcld 10002 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  b )  x.  A )  e.  ZZ )
2820, 27zmulcld 10002 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  (
( A Yrm  b )  x.  A ) )  e.  ZZ )
29 zmulcl 9945 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  1  e.  ZZ )  ->  ( b  x.  1 )  e.  ZZ )
3023, 10, 29sylancl 646 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  x.  1 )  e.  ZZ )
3120, 30zmulcld 10002 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  (
b  x.  1 ) )  e.  ZZ )
3218, 28, 313jca 1137 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  - 
1 )  e.  ZZ  /\  ( 2  x.  (
( A Yrm  b )  x.  A ) )  e.  ZZ  /\  ( 2  x.  ( b  x.  1 ) )  e.  ZZ ) )
33323adant3 980 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A  -  1 )  e.  ZZ  /\  (
2  x.  ( ( A Yrm  b )  x.  A
) )  e.  ZZ  /\  ( 2  x.  (
b  x.  1 ) )  e.  ZZ ) )
34 peano2zm 9941 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  (
b  -  1 )  e.  ZZ )
3523, 34syl 17 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  -  1 )  e.  ZZ )
3624fovcl 5801 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  -  1 )  e.  ZZ )  -> 
( A Yrm  ( b  - 
1 ) )  e.  ZZ )
3721, 35, 36syl2anc 645 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  - 
1 ) )  e.  ZZ )
3837, 35jca 520 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  -  1 ) )  e.  ZZ  /\  (
b  -  1 )  e.  ZZ ) )
39383adant3 980 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A Yrm  ( b  -  1 ) )  e.  ZZ  /\  ( b  -  1 )  e.  ZZ ) )
4018, 20, 203jca 1137 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  - 
1 )  e.  ZZ  /\  2  e.  ZZ  /\  2  e.  ZZ )
)
41403adant3 980 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A  -  1 )  e.  ZZ  /\  2  e.  ZZ  /\  2  e.  ZZ ) )
4227, 30jca 520 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( A Yrm  b )  x.  A )  e.  ZZ  /\  (
b  x.  1 )  e.  ZZ ) )
43423adant3 980 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( (
( A Yrm  b )  x.  A )  e.  ZZ  /\  ( b  x.  1 )  e.  ZZ ) )
44 congid 26224 . . . . . . . . . . 11  |-  ( ( ( A  -  1 )  e.  ZZ  /\  2  e.  ZZ )  ->  ( A  -  1 )  ||  ( 2  -  2 ) )
4518, 20, 44syl2anc 645 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A  -  1 )  ||  ( 2  -  2 ) )
46453adant3 980 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( 2  -  2 ) )
4718, 26, 233jca 1137 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  - 
1 )  e.  ZZ  /\  ( A Yrm  b )  e.  ZZ  /\  b  e.  ZZ ) )
48473adant3 980 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A  -  1 )  e.  ZZ  /\  ( A Yrm  b )  e.  ZZ  /\  b  e.  ZZ ) )
4910a1i 12 . . . . . . . . . . . 12  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
1  e.  ZZ )
5017, 49jca 520 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A  e.  ZZ  /\  1  e.  ZZ ) )
51503adant3 980 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  e.  ZZ  /\  1  e.  ZZ ) )
52 simp3r 989 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) )
53 iddvds 12416 . . . . . . . . . . . 12  |-  ( ( A  -  1 )  e.  ZZ  ->  ( A  -  1 ) 
||  ( A  - 
1 ) )
5418, 53syl 17 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A  -  1 )  ||  ( A  -  1 ) )
55543adant3 980 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( A  -  1
) )
56 congmul 26220 . . . . . . . . . 10  |-  ( ( ( ( A  - 
1 )  e.  ZZ  /\  ( A Yrm  b )  e.  ZZ  /\  b  e.  ZZ )  /\  ( A  e.  ZZ  /\  1  e.  ZZ )  /\  (
( A  -  1 )  ||  ( ( A Yrm  b )  -  b
)  /\  ( A  -  1 )  ||  ( A  -  1
) ) )  -> 
( A  -  1 )  ||  ( ( ( A Yrm  b )  x.  A )  -  (
b  x.  1 ) ) )
5748, 51, 52, 55, 56syl112anc 1191 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( ( A Yrm  b )  x.  A )  -  ( b  x.  1 ) ) )
58 congmul 26220 . . . . . . . . 9  |-  ( ( ( ( A  - 
1 )  e.  ZZ  /\  2  e.  ZZ  /\  2  e.  ZZ )  /\  ( ( ( A Yrm  b )  x.  A )  e.  ZZ  /\  (
b  x.  1 )  e.  ZZ )  /\  ( ( A  - 
1 )  ||  (
2  -  2 )  /\  ( A  - 
1 )  ||  (
( ( A Yrm  b )  x.  A )  -  ( b  x.  1 ) ) ) )  ->  ( A  - 
1 )  ||  (
( 2  x.  (
( A Yrm  b )  x.  A ) )  -  ( 2  x.  (
b  x.  1 ) ) ) )
5941, 43, 46, 57, 58syl112anc 1191 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( 2  x.  ( b  x.  1 ) ) ) )
60 simp3l 988 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  ( b  - 
1 ) ) )
61 congsub 26223 . . . . . . . 8  |-  ( ( ( ( A  - 
1 )  e.  ZZ  /\  ( 2  x.  (
( A Yrm  b )  x.  A ) )  e.  ZZ  /\  ( 2  x.  ( b  x.  1 ) )  e.  ZZ )  /\  (
( A Yrm  ( b  - 
1 ) )  e.  ZZ  /\  ( b  -  1 )  e.  ZZ )  /\  (
( A  -  1 )  ||  ( ( 2  x.  ( ( A Yrm  b )  x.  A
) )  -  (
2  x.  ( b  x.  1 ) ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  ( b  - 
1 ) ) ) )  ->  ( A  -  1 )  ||  ( ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) )  -  (
( 2  x.  (
b  x.  1 ) )  -  ( b  -  1 ) ) ) )
6233, 39, 59, 60, 61syl112anc 1191 . . . . . . 7  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) )  -  (
( 2  x.  (
b  x.  1 ) )  -  ( b  -  1 ) ) ) )
63 rmyluc 26188 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  ( b  +  1 ) )  =  ( ( 2  x.  (
( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  - 
1 ) ) ) )
6421, 23, 63syl2anc 645 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  +  1 ) )  =  ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) ) )
65 nncn 9634 . . . . . . . . . . . . . . 15  |-  ( b  e.  NN  ->  b  e.  CC )
6665mulid1d 8732 . . . . . . . . . . . . . 14  |-  ( b  e.  NN  ->  (
b  x.  1 )  =  b )
6766oveq2d 5726 . . . . . . . . . . . . 13  |-  ( b  e.  NN  ->  (
2  x.  ( b  x.  1 ) )  =  ( 2  x.  b ) )
68652timesd 9833 . . . . . . . . . . . . 13  |-  ( b  e.  NN  ->  (
2  x.  b )  =  ( b  +  b ) )
6967, 68eqtrd 2285 . . . . . . . . . . . 12  |-  ( b  e.  NN  ->  (
2  x.  ( b  x.  1 ) )  =  ( b  +  b ) )
7069oveq1d 5725 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  (
( 2  x.  (
b  x.  1 ) )  -  ( b  -  1 ) )  =  ( ( b  +  b )  -  ( b  -  1 ) ) )
71 ax-1cn 8675 . . . . . . . . . . . . 13  |-  1  e.  CC
7271a1i 12 . . . . . . . . . . . 12  |-  ( b  e.  NN  ->  1  e.  CC )
7365, 65, 72pnncand 9076 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  (
( b  +  b )  -  ( b  -  1 ) )  =  ( b  +  1 ) )
7470, 73eqtr2d 2286 . . . . . . . . . 10  |-  ( b  e.  NN  ->  (
b  +  1 )  =  ( ( 2  x.  ( b  x.  1 ) )  -  ( b  -  1 ) ) )
7574adantr 453 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  +  1 )  =  ( ( 2  x.  ( b  x.  1 ) )  -  ( b  - 
1 ) ) )
7664, 75oveq12d 5728 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) )  =  ( ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) )  -  (
( 2  x.  (
b  x.  1 ) )  -  ( b  -  1 ) ) ) )
77763adant3 980 . . . . . . 7  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A Yrm  ( b  +  1 ) )  -  (
b  +  1 ) )  =  ( ( ( 2  x.  (
( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  - 
1 ) ) )  -  ( ( 2  x.  ( b  x.  1 ) )  -  ( b  -  1 ) ) ) )
7862, 77breqtrrd 3946 . . . . . 6  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) )
79783exp 1155 . . . . 5  |-  ( b  e.  NN  ->  ( A  e.  ( ZZ>= ` 
2 )  ->  (
( ( A  - 
1 )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( b  -  1 ) )  /\  ( A  -  1 ) 
||  ( ( A Yrm  b )  -  b ) )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) ) ) )
8079a2d 25 . . . 4  |-  ( b  e.  NN  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( A  - 
1 )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( b  -  1 ) )  /\  ( A  -  1 ) 
||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  e.  ( ZZ>= ` 
2 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) ) ) )
8116, 80syl5 30 . . 3  |-  ( b  e.  NN  ->  (
( ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) ) )  /\  ( A  e.  ( ZZ>= ` 
2 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  e.  ( ZZ>= ` 
2 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) ) ) )
82 oveq2 5718 . . . . . 6  |-  ( a  =  0  ->  ( A Yrm  a )  =  ( A Yrm  0 ) )
83 id 21 . . . . . 6  |-  ( a  =  0  ->  a  =  0 )
8482, 83oveq12d 5728 . . . . 5  |-  ( a  =  0  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  0 )  - 
0 ) )
8584breq2d 3932 . . . 4  |-  ( a  =  0  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  0 )  - 
0 ) ) )
8685imbi2d 309 . . 3  |-  ( a  =  0  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  0 )  -  0 ) ) ) )
87 oveq2 5718 . . . . . 6  |-  ( a  =  1  ->  ( A Yrm  a )  =  ( A Yrm  1 ) )
88 id 21 . . . . . 6  |-  ( a  =  1  ->  a  =  1 )
8987, 88oveq12d 5728 . . . . 5  |-  ( a  =  1  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  1 )  - 
1 ) )
9089breq2d 3932 . . . 4  |-  ( a  =  1  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  1 )  - 
1 ) ) )
9190imbi2d 309 . . 3  |-  ( a  =  1  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  1 )  -  1 ) ) ) )
92 oveq2 5718 . . . . . 6  |-  ( a  =  ( b  - 
1 )  ->  ( A Yrm  a )  =  ( A Yrm  ( b  -  1 ) ) )
93 id 21 . . . . . 6  |-  ( a  =  ( b  - 
1 )  ->  a  =  ( b  - 
1 ) )
9492, 93oveq12d 5728 . . . . 5  |-  ( a  =  ( b  - 
1 )  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  ( b  - 
1 ) )  -  ( b  -  1 ) ) )
9594breq2d 3932 . . . 4  |-  ( a  =  ( b  - 
1 )  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( b  -  1 ) ) ) )
9695imbi2d 309 . . 3  |-  ( a  =  ( b  - 
1 )  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) ) ) ) )
97 oveq2 5718 . . . . . 6  |-  ( a  =  b  ->  ( A Yrm  a )  =  ( A Yrm  b ) )
98 id 21 . . . . . 6  |-  ( a  =  b  ->  a  =  b )
9997, 98oveq12d 5728 . . . . 5  |-  ( a  =  b  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  b )  -  b ) )
10099breq2d 3932 . . . 4  |-  ( a  =  b  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  b )  -  b ) ) )
101100imbi2d 309 . . 3  |-  ( a  =  b  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b
) ) ) )
102 oveq2 5718 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  ( A Yrm  a )  =  ( A Yrm  ( b  +  1 ) ) )
103 id 21 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  a  =  ( b  +  1 ) )
104102, 103oveq12d 5728 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) )
105104breq2d 3932 . . . 4  |-  ( a  =  ( b  +  1 )  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) ) )
106105imbi2d 309 . . 3  |-  ( a  =  ( b  +  1 )  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  +  1 ) )  -  (
b  +  1 ) ) ) ) )
107 oveq2 5718 . . . . . 6  |-  ( a  =  N  ->  ( A Yrm  a )  =  ( A Yrm  N ) )
108 id 21 . . . . . 6  |-  ( a  =  N  ->  a  =  N )
109107, 108oveq12d 5728 . . . . 5  |-  ( a  =  N  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  N )  -  N ) )
110109breq2d 3932 . . . 4  |-  ( a  =  N  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  N )  -  N ) ) )
111110imbi2d 309 . . 3  |-  ( a  =  N  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  N )  -  N
) ) ) )
1129, 15, 81, 86, 91, 96, 101, 106, 1112nn0ind 26196 . 2  |-  ( N  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( ( A Yrm  N )  -  N ) ) )
113112impcom 421 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  N )  -  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CCcc 8615   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    - cmin 8917   NNcn 9626   2c2 9675   NN0cn0 9844   ZZcz 9903   ZZ>=cuz 10109    || cdivides 12405   Yrm crmy 26152
This theorem is referenced by:  jm2.27a  26264  jm2.27c  26266
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-acn 7459  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-sum 12036  df-ef 12223  df-sin 12225  df-cos 12226  df-pi 12228  df-divides 12406  df-gcd 12560  df-numer 12680  df-denom 12681  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-squarenn 26092  df-pell1qr 26093  df-pell14qr 26094  df-pell1234qr 26095  df-pellfund 26096  df-rmx 26153  df-rmy 26154
  Copyright terms: Public domain W3C validator