MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jccir Structured version   Unicode version

Theorem jccir 539
Description: Inference conjoining a consequent of a consequent to the right of the consequent in an implication. See also ex-natded5.3i 24904. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by AV, 20-Aug-2019.)
Hypotheses
Ref Expression
jccir.1  |-  ( ph  ->  ps )
jccir.2  |-  ( ps 
->  ch )
Assertion
Ref Expression
jccir  |-  ( ph  ->  ( ps  /\  ch ) )

Proof of Theorem jccir
StepHypRef Expression
1 jccir.1 . 2  |-  ( ph  ->  ps )
2 jccir.2 . . 3  |-  ( ps 
->  ch )
31, 2syl 16 . 2  |-  ( ph  ->  ch )
41, 3jca 532 1  |-  ( ph  ->  ( ps  /\  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  jccil  540  maxprmfct  14116  telgsums  16837  leordtvallem1  19517  leordtvallem2  19518  mbfmax  21883  wlklniswwlkn2  24473  stoweidlem34  31561
  Copyright terms: Public domain W3C validator