MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jarr Structured version   Unicode version

Theorem jarr 101
Description: Elimination of a nested antecedent as a partial converse of ja 164 (the other being jarl 166). (Contributed by Wolf Lammen, 9-May-2013.)
Assertion
Ref Expression
jarr  |-  ( ( ( ph  ->  ps )  ->  ch )  -> 
( ps  ->  ch ) )

Proof of Theorem jarr
StepHypRef Expression
1 ax-1 6 . 2  |-  ( ps 
->  ( ph  ->  ps ) )
21imim1i 60 1  |-  ( ( ( ph  ->  ps )  ->  ch )  -> 
( ps  ->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  loolin  106  loowoz  107  bj-jarri  31135  ax3h  38351
  Copyright terms: Public domain W3C validator