MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jarl Structured version   Visualization version   Unicode version

Theorem jarl 167
Description: Elimination of a nested antecedent as a partial converse of ja 165 (the other being jarr 101). (Contributed by Wolf Lammen, 10-May-2013.)
Assertion
Ref Expression
jarl  |-  ( ( ( ph  ->  ps )  ->  ch )  -> 
( -.  ph  ->  ch ) )

Proof of Theorem jarl
StepHypRef Expression
1 pm2.21 112 . 2  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
21imim1i 60 1  |-  ( ( ( ph  ->  ps )  ->  ch )  -> 
( -.  ph  ->  ch ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.68  412  merco2  1621  rp-fakeimass  36168
  Copyright terms: Public domain W3C validator