Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaoi2OLD Structured version   Unicode version

Theorem jaoi2OLD 962
 Description: Obsolete proof of jaoi2 961 as of 21-Sep-2018. (Contributed by Alexander van der Vekens, 3-Nov-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
jaoi2.1
Assertion
Ref Expression
jaoi2OLD

Proof of Theorem jaoi2OLD
StepHypRef Expression
1 exmid 415 . . . 4
2 iba 503 . . . . 5
3 ancom 450 . . . . . 6
4 andir 864 . . . . . 6
53, 4bitri 249 . . . . 5
62, 5syl6bb 261 . . . 4
71, 6ax-mp 5 . . 3
87orbi2i 519 . 2
9 orass 524 . . . . 5
109bicomi 202 . . . 4
11 pm4.44 577 . . . . . 6
1211bicomi 202 . . . . 5
1312orbi1i 520 . . . 4
1410, 13bitri 249 . . 3
15 jaoi2.1 . . 3
1614, 15sylbi 195 . 2
178, 16sylbi 195 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 184   wo 368   wa 369 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator