MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaoi2 Unicode version

Theorem jaoi2 934
Description: Inference removing a negated conjunct in a disjunction of an antecedent if this conjunct is part of the disjunction. (Contributed by Alexander van der Vekens, 3-Nov-2017.)
Hypothesis
Ref Expression
jaoi2.1  |-  ( (
ph  \/  ( -.  ph 
/\  ch ) )  ->  ps )
Assertion
Ref Expression
jaoi2  |-  ( (
ph  \/  ch )  ->  ps )

Proof of Theorem jaoi2
StepHypRef Expression
1 exmid 405 . . . 4  |-  ( ph  \/  -.  ph )
2 iba 490 . . . . 5  |-  ( (
ph  \/  -.  ph )  ->  ( ch  <->  ( ch  /\  ( ph  \/  -.  ph ) ) ) )
3 ancom 438 . . . . . 6  |-  ( ( ch  /\  ( ph  \/  -.  ph ) )  <-> 
( ( ph  \/  -.  ph )  /\  ch ) )
4 andir 839 . . . . . 6  |-  ( ( ( ph  \/  -.  ph )  /\  ch )  <->  ( ( ph  /\  ch )  \/  ( -.  ph 
/\  ch ) ) )
53, 4bitri 241 . . . . 5  |-  ( ( ch  /\  ( ph  \/  -.  ph ) )  <-> 
( ( ph  /\  ch )  \/  ( -.  ph  /\  ch )
) )
62, 5syl6bb 253 . . . 4  |-  ( (
ph  \/  -.  ph )  ->  ( ch  <->  ( ( ph  /\  ch )  \/  ( -.  ph  /\  ch ) ) ) )
71, 6ax-mp 8 . . 3  |-  ( ch  <->  ( ( ph  /\  ch )  \/  ( -.  ph 
/\  ch ) ) )
87orbi2i 506 . 2  |-  ( (
ph  \/  ch )  <->  (
ph  \/  ( ( ph  /\  ch )  \/  ( -.  ph  /\  ch ) ) ) )
9 orass 511 . . . . 5  |-  ( ( ( ph  \/  ( ph  /\  ch ) )  \/  ( -.  ph  /\ 
ch ) )  <->  ( ph  \/  ( ( ph  /\  ch )  \/  ( -.  ph  /\  ch )
) ) )
109bicomi 194 . . . 4  |-  ( (
ph  \/  ( ( ph  /\  ch )  \/  ( -.  ph  /\  ch ) ) )  <->  ( ( ph  \/  ( ph  /\  ch ) )  \/  ( -.  ph  /\  ch )
) )
11 pm4.44 561 . . . . . 6  |-  ( ph  <->  (
ph  \/  ( ph  /\ 
ch ) ) )
1211bicomi 194 . . . . 5  |-  ( (
ph  \/  ( ph  /\ 
ch ) )  <->  ph )
1312orbi1i 507 . . . 4  |-  ( ( ( ph  \/  ( ph  /\  ch ) )  \/  ( -.  ph  /\ 
ch ) )  <->  ( ph  \/  ( -.  ph  /\  ch ) ) )
1410, 13bitri 241 . . 3  |-  ( (
ph  \/  ( ( ph  /\  ch )  \/  ( -.  ph  /\  ch ) ) )  <->  ( ph  \/  ( -.  ph  /\  ch ) ) )
15 jaoi2.1 . . 3  |-  ( (
ph  \/  ( -.  ph 
/\  ch ) )  ->  ps )
1614, 15sylbi 188 . 2  |-  ( (
ph  \/  ( ( ph  /\  ch )  \/  ( -.  ph  /\  ch ) ) )  ->  ps )
178, 16sylbi 188 1  |-  ( (
ph  \/  ch )  ->  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359
This theorem is referenced by:  bropopvvv  6385  2wlkonot3v  28072  2spthonot3v  28073
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361
  Copyright terms: Public domain W3C validator