MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaao Structured version   Visualization version   Unicode version

Theorem jaao 518
Description: Inference conjoining and disjoining the antecedents of two implications. (Contributed by NM, 30-Sep-1999.)
Hypotheses
Ref Expression
jaao.1  |-  ( ph  ->  ( ps  ->  ch ) )
jaao.2  |-  ( th 
->  ( ta  ->  ch ) )
Assertion
Ref Expression
jaao  |-  ( (
ph  /\  th )  ->  ( ( ps  \/  ta )  ->  ch )
)

Proof of Theorem jaao
StepHypRef Expression
1 jaao.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21adantr 472 . 2  |-  ( (
ph  /\  th )  ->  ( ps  ->  ch ) )
3 jaao.2 . . 3  |-  ( th 
->  ( ta  ->  ch ) )
43adantl 473 . 2  |-  ( (
ph  /\  th )  ->  ( ta  ->  ch ) )
52, 4jaod 387 1  |-  ( (
ph  /\  th )  ->  ( ( ps  \/  ta )  ->  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 375    /\ wa 376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378
This theorem is referenced by:  pm3.44  520  pm3.48  851  prlem1  974  ordtri1  5463  ordun  5531  suc11  5533  funun  5631  poxp  6927  suc11reg  8142  rankunb  8339  gruun  9249  ofpreima2  28344  wl-orel12  31919
  Copyright terms: Public domain W3C validator