MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxun Structured version   Unicode version

Theorem ixxun 11556
Description: Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxun.2  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
ixxun.3  |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B T w  <->  -.  w S B ) )
ixxun.4  |-  Q  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z U y ) } )
ixxun.5  |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( w S B  /\  B X C )  ->  w U C ) )
ixxun.6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e. 
RR* )  ->  (
( A W B  /\  B T w )  ->  A R w ) )
Assertion
Ref Expression
ixxun  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  -> 
( ( A O B )  u.  ( B P C ) )  =  ( A Q C ) )
Distinct variable groups:    x, w, y, z, A    w, C, x, y, z    w, O   
w, Q    w, B, x, y, z    w, P   
x, R, y, z   
x, S, y, z   
x, T, y, z   
x, U, y, z   
w, W    w, X
Allowed substitution hints:    P( x, y, z)    Q( x, y, z)    R( w)    S( w)    T( w)    U( w)    O( x, y, z)    W( x, y, z)    X( x, y, z)

Proof of Theorem ixxun
StepHypRef Expression
1 elun 3630 . . 3  |-  ( w  e.  ( ( A O B )  u.  ( B P C ) )  <->  ( w  e.  ( A O B )  \/  w  e.  ( B P C ) ) )
2 simpl1 1000 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  ->  A  e.  RR* )
3 simpl2 1001 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  ->  B  e.  RR* )
4 ixx.1 . . . . . . . . . . 11  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
54elixx1 11549 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
62, 3, 5syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  -> 
( w  e.  ( A O B )  <-> 
( w  e.  RR*  /\  A R w  /\  w S B ) ) )
76biimpa 484 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A O B ) )  -> 
( w  e.  RR*  /\  A R w  /\  w S B ) )
87simp1d 1009 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A O B ) )  ->  w  e.  RR* )
97simp2d 1010 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A O B ) )  ->  A R w )
107simp3d 1011 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A O B ) )  ->  w S B )
11 simplrr 762 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A O B ) )  ->  B X C )
123adantr 465 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A O B ) )  ->  B  e.  RR* )
13 simpl3 1002 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  ->  C  e.  RR* )
1413adantr 465 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A O B ) )  ->  C  e.  RR* )
15 ixxun.5 . . . . . . . . 9  |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( w S B  /\  B X C )  ->  w U C ) )
168, 12, 14, 15syl3anc 1229 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A O B ) )  -> 
( ( w S B  /\  B X C )  ->  w U C ) )
1710, 11, 16mp2and 679 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A O B ) )  ->  w U C )
188, 9, 173jca 1177 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A O B ) )  -> 
( w  e.  RR*  /\  A R w  /\  w U C ) )
19 ixxun.2 . . . . . . . . . . 11  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
2019elixx1 11549 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  (
w  e.  ( B P C )  <->  ( w  e.  RR*  /\  B T w  /\  w U C ) ) )
213, 13, 20syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  -> 
( w  e.  ( B P C )  <-> 
( w  e.  RR*  /\  B T w  /\  w U C ) ) )
2221biimpa 484 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( B P C ) )  -> 
( w  e.  RR*  /\  B T w  /\  w U C ) )
2322simp1d 1009 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( B P C ) )  ->  w  e.  RR* )
24 simplrl 761 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( B P C ) )  ->  A W B )
2522simp2d 1010 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( B P C ) )  ->  B T w )
262adantr 465 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( B P C ) )  ->  A  e.  RR* )
273adantr 465 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( B P C ) )  ->  B  e.  RR* )
28 ixxun.6 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e. 
RR* )  ->  (
( A W B  /\  B T w )  ->  A R w ) )
2926, 27, 23, 28syl3anc 1229 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( B P C ) )  -> 
( ( A W B  /\  B T w )  ->  A R w ) )
3024, 25, 29mp2and 679 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( B P C ) )  ->  A R w )
3122simp3d 1011 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( B P C ) )  ->  w U C )
3223, 30, 313jca 1177 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( B P C ) )  -> 
( w  e.  RR*  /\  A R w  /\  w U C ) )
3318, 32jaodan 785 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  ( w  e.  ( A O B )  \/  w  e.  ( B P C ) ) )  ->  ( w  e.  RR*  /\  A R w  /\  w U C ) )
34 ixxun.4 . . . . . . . 8  |-  Q  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z U y ) } )
3534elixx1 11549 . . . . . . 7  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  (
w  e.  ( A Q C )  <->  ( w  e.  RR*  /\  A R w  /\  w U C ) ) )
362, 13, 35syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  -> 
( w  e.  ( A Q C )  <-> 
( w  e.  RR*  /\  A R w  /\  w U C ) ) )
3736biimpar 485 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  ( w  e.  RR*  /\  A R w  /\  w U C ) )  ->  w  e.  ( A Q C ) )
3833, 37syldan 470 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  ( w  e.  ( A O B )  \/  w  e.  ( B P C ) ) )  ->  w  e.  ( A Q C ) )
39 exmid 415 . . . . 5  |-  ( w S B  \/  -.  w S B )
40 df-3an 976 . . . . . . . . 9  |-  ( ( w  e.  RR*  /\  A R w  /\  w S B )  <->  ( (
w  e.  RR*  /\  A R w )  /\  w S B ) )
416, 40syl6bb 261 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  -> 
( w  e.  ( A O B )  <-> 
( ( w  e. 
RR*  /\  A R w )  /\  w S B ) ) )
4241adantr 465 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  -> 
( w  e.  ( A O B )  <-> 
( ( w  e. 
RR*  /\  A R w )  /\  w S B ) ) )
4336biimpa 484 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  -> 
( w  e.  RR*  /\  A R w  /\  w U C ) )
4443simp1d 1009 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  ->  w  e.  RR* )
4543simp2d 1010 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  ->  A R w )
4644, 45jca 532 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  -> 
( w  e.  RR*  /\  A R w ) )
4746biantrurd 508 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  -> 
( w S B  <-> 
( ( w  e. 
RR*  /\  A R w )  /\  w S B ) ) )
4842, 47bitr4d 256 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  -> 
( w  e.  ( A O B )  <-> 
w S B ) )
49 3anan12 987 . . . . . . . . 9  |-  ( ( w  e.  RR*  /\  B T w  /\  w U C )  <->  ( B T w  /\  (
w  e.  RR*  /\  w U C ) ) )
5021, 49syl6bb 261 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  -> 
( w  e.  ( B P C )  <-> 
( B T w  /\  ( w  e. 
RR*  /\  w U C ) ) ) )
5150adantr 465 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  -> 
( w  e.  ( B P C )  <-> 
( B T w  /\  ( w  e. 
RR*  /\  w U C ) ) ) )
5243simp3d 1011 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  ->  w U C )
5344, 52jca 532 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  -> 
( w  e.  RR*  /\  w U C ) )
5453biantrud 507 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  -> 
( B T w  <-> 
( B T w  /\  ( w  e. 
RR*  /\  w U C ) ) ) )
553adantr 465 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  ->  B  e.  RR* )
56 ixxun.3 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B T w  <->  -.  w S B ) )
5755, 44, 56syl2anc 661 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  -> 
( B T w  <->  -.  w S B ) )
5851, 54, 573bitr2d 281 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  -> 
( w  e.  ( B P C )  <->  -.  w S B ) )
5948, 58orbi12d 709 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  -> 
( ( w  e.  ( A O B )  \/  w  e.  ( B P C ) )  <->  ( w S B  \/  -.  w S B ) ) )
6039, 59mpbiri 233 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  /\  w  e.  ( A Q C ) )  -> 
( w  e.  ( A O B )  \/  w  e.  ( B P C ) ) )
6138, 60impbida 832 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  -> 
( ( w  e.  ( A O B )  \/  w  e.  ( B P C ) )  <->  w  e.  ( A Q C ) ) )
621, 61syl5bb 257 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  -> 
( w  e.  ( ( A O B )  u.  ( B P C ) )  <-> 
w  e.  ( A Q C ) ) )
6362eqrdv 2440 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  -> 
( ( A O B )  u.  ( B P C ) )  =  ( A Q C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   {crab 2797    u. cun 3459   class class class wbr 4437  (class class class)co 6281    |-> cmpt2 6283   RR*cxr 9630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-iota 5541  df-fun 5580  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-xr 9635
This theorem is referenced by:  icoun  11655  snunioo  11657  snunico  11658  snunioc  11659  ioojoin  11662  leordtval2  19691  lecldbas  19698  icopnfcld  21253  iocmnfcld  21254  ioombl  21953  ismbf3d  22039  joiniooico  27563  asindmre  30078  ioounsn  31153  snunioo2  31498  snunioo1  31506
  Copyright terms: Public domain W3C validator