MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxub Structured version   Unicode version

Theorem ixxub 11521
Description: Extract the upper bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxub.2  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w  <  B  ->  w S B ) )
ixxub.3  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w S B  ->  w  <_  B ) )
ixxub.4  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A R w ) )
ixxub.5  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A  <_  w ) )
Assertion
Ref Expression
ixxub  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
( A O B ) ,  RR* ,  <  )  =  B )
Distinct variable groups:    x, w, y, z, A    w, O    w, B, x, y, z   
x, R, y, z   
x, S, y, z
Allowed substitution hints:    R( w)    S( w)    O( x, y, z)

Proof of Theorem ixxub
StepHypRef Expression
1 ixx.1 . . . . . . . . 9  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
21elixx1 11509 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
323adant3 1017 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
43biimpa 482 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  (
w  e.  RR*  /\  A R w  /\  w S B ) )
54simp3d 1011 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w S B )
64simp1d 1009 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w  e.  RR* )
7 simp2 998 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  B  e. 
RR* )
87adantr 463 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  B  e.  RR* )
9 ixxub.3 . . . . . 6  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w S B  ->  w  <_  B ) )
106, 8, 9syl2anc 659 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  (
w S B  ->  w  <_  B ) )
115, 10mpd 15 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w  <_  B )
1211ralrimiva 2817 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  A. w  e.  ( A O B ) w  <_  B
)
136ex 432 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( w  e.  ( A O B )  ->  w  e.  RR* ) )
1413ssrdv 3447 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( A O B )  C_  RR* )
15 supxrleub 11489 . . . 4  |-  ( ( ( A O B )  C_  RR*  /\  B  e.  RR* )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  <_  B  <->  A. w  e.  ( A O B ) w  <_  B ) )
1614, 7, 15syl2anc 659 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  <_  B  <->  A. w  e.  ( A O B ) w  <_  B ) )
1712, 16mpbird 232 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
( A O B ) ,  RR* ,  <  )  <_  B )
18 simprl 756 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  sup ( ( A O B ) ,  RR* ,  <  )  <  w
)
1914ad2antrr 724 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( A O B )  C_  RR* )
20 qre 11150 . . . . . . . . . . 11  |-  ( w  e.  QQ  ->  w  e.  RR )
2120rexrd 9593 . . . . . . . . . 10  |-  ( w  e.  QQ  ->  w  e.  RR* )
2221ad2antlr 725 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w  e.  RR* )
23 simp1 997 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  A  e. 
RR* )
2423ad2antrr 724 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  A  e.  RR* )
25 supxrcl 11477 . . . . . . . . . . . . 13  |-  ( ( A O B ) 
C_  RR*  ->  sup (
( A O B ) ,  RR* ,  <  )  e.  RR* )
2614, 25syl 17 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
( A O B ) ,  RR* ,  <  )  e.  RR* )
2726ad2antrr 724 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  sup ( ( A O B ) ,  RR* ,  <  )  e.  RR* )
28 simp3 999 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( A O B )  =/=  (/) )
29 n0 3747 . . . . . . . . . . . . . 14  |-  ( ( A O B )  =/=  (/)  <->  E. w  w  e.  ( A O B ) )
3028, 29sylib 196 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  E. w  w  e.  ( A O B ) )
3123adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A  e.  RR* )
3226adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  sup ( ( A O B ) ,  RR* ,  <  )  e.  RR* )
334simp2d 1010 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A R w )
34 ixxub.5 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A  <_  w ) )
3531, 6, 34syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  ( A R w  ->  A  <_  w ) )
3633, 35mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A  <_  w )
37 supxrub 11487 . . . . . . . . . . . . . . 15  |-  ( ( ( A O B )  C_  RR*  /\  w  e.  ( A O B ) )  ->  w  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
3814, 37sylan 469 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
3931, 6, 32, 36, 38xrletrd 11336 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
4030, 39exlimddv 1747 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  A  <_  sup ( ( A O B ) ,  RR* ,  <  ) )
4140ad2antrr 724 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  A  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
4224, 27, 22, 41, 18xrlelttrd 11334 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  A  <  w )
43 ixxub.4 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A R w ) )
4424, 22, 43syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( A  <  w  ->  A R w ) )
4542, 44mpd 15 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  A R w )
46 simprr 758 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w  <  B )
477ad2antrr 724 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  B  e.  RR* )
48 ixxub.2 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w  <  B  ->  w S B ) )
4922, 47, 48syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( w  <  B  ->  w S B ) )
5046, 49mpd 15 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w S B )
513ad2antrr 724 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( w  e.  ( A O B )  <-> 
( w  e.  RR*  /\  A R w  /\  w S B ) ) )
5222, 45, 50, 51mpbir3and 1180 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w  e.  ( A O B ) )
5319, 52, 37syl2anc 659 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  w  <_  sup ( ( A O B ) , 
RR* ,  <  ) )
54 xrlenlt 9602 . . . . . . . 8  |-  ( ( w  e.  RR*  /\  sup ( ( A O B ) ,  RR* ,  <  )  e.  RR* )  ->  ( w  <_  sup ( ( A O B ) ,  RR* ,  <  )  <->  -.  sup (
( A O B ) ,  RR* ,  <  )  <  w ) )
5522, 27, 54syl2anc 659 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  -> 
( w  <_  sup ( ( A O B ) ,  RR* ,  <  )  <->  -.  sup (
( A O B ) ,  RR* ,  <  )  <  w ) )
5653, 55mpbid 210 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  < 
B ) )  ->  -.  sup ( ( A O B ) , 
RR* ,  <  )  < 
w )
5718, 56pm2.65da 574 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  ->  -.  ( sup ( ( A O B ) , 
RR* ,  <  )  < 
w  /\  w  <  B ) )
5857nrexdv 2859 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  -.  E. w  e.  QQ  ( sup ( ( A O B ) ,  RR* ,  <  )  <  w  /\  w  <  B ) )
59 qbtwnxr 11370 . . . . . 6  |-  ( ( sup ( ( A O B ) , 
RR* ,  <  )  e. 
RR*  /\  B  e.  RR* 
/\  sup ( ( A O B ) , 
RR* ,  <  )  < 
B )  ->  E. w  e.  QQ  ( sup (
( A O B ) ,  RR* ,  <  )  <  w  /\  w  <  B ) )
60593expia 1199 . . . . 5  |-  ( ( sup ( ( A O B ) , 
RR* ,  <  )  e. 
RR*  /\  B  e.  RR* )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  <  B  ->  E. w  e.  QQ  ( sup ( ( A O B ) , 
RR* ,  <  )  < 
w  /\  w  <  B ) ) )
6126, 7, 60syl2anc 659 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  <  B  ->  E. w  e.  QQ  ( sup ( ( A O B ) , 
RR* ,  <  )  < 
w  /\  w  <  B ) ) )
6258, 61mtod 177 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  -.  sup ( ( A O B ) ,  RR* ,  <  )  <  B
)
63 xrlenlt 9602 . . . 4  |-  ( ( B  e.  RR*  /\  sup ( ( A O B ) ,  RR* ,  <  )  e.  RR* )  ->  ( B  <_  sup ( ( A O B ) ,  RR* ,  <  )  <->  -.  sup (
( A O B ) ,  RR* ,  <  )  <  B ) )
647, 26, 63syl2anc 659 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( B  <_  sup ( ( A O B ) , 
RR* ,  <  )  <->  -.  sup (
( A O B ) ,  RR* ,  <  )  <  B ) )
6562, 64mpbird 232 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  B  <_  sup ( ( A O B ) ,  RR* ,  <  ) )
66 xrletri3 11329 . . 3  |-  ( ( sup ( ( A O B ) , 
RR* ,  <  )  e. 
RR*  /\  B  e.  RR* )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  =  B  <-> 
( sup ( ( A O B ) ,  RR* ,  <  )  <_  B  /\  B  <_  sup ( ( A O B ) ,  RR* ,  <  ) ) ) )
6726, 7, 66syl2anc 659 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( sup ( ( A O B ) ,  RR* ,  <  )  =  B  <-> 
( sup ( ( A O B ) ,  RR* ,  <  )  <_  B  /\  B  <_  sup ( ( A O B ) ,  RR* ,  <  ) ) ) )
6817, 65, 67mpbir2and 923 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
( A O B ) ,  RR* ,  <  )  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405   E.wex 1633    e. wcel 1842    =/= wne 2598   A.wral 2753   E.wrex 2754   {crab 2757    C_ wss 3413   (/)c0 3737   class class class wbr 4394  (class class class)co 6234    |-> cmpt2 6236   supcsup 7854   RR*cxr 9577    < clt 9578    <_ cle 9579   QQcq 11145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-cnex 9498  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519  ax-pre-sup 9520
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-om 6639  df-1st 6738  df-2nd 6739  df-recs 6999  df-rdg 7033  df-er 7268  df-en 7475  df-dom 7476  df-sdom 7477  df-sup 7855  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764  df-div 10168  df-nn 10497  df-n0 10757  df-z 10826  df-uz 11046  df-q 11146
This theorem is referenced by:  ioopnfsup  11942  icopnfsup  11943  bndth  21642  ioorf  22166  ioorinv2  22168  ioossioobi  36907
  Copyright terms: Public domain W3C validator