MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxf Structured version   Unicode version

Theorem ixxf 11420
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Hypothesis
Ref Expression
ixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
Assertion
Ref Expression
ixxf  |-  O :
( RR*  X.  RR* ) --> ~P RR*
Distinct variable groups:    x, y,
z, R    x, S, y, z
Allowed substitution hints:    O( x, y, z)

Proof of Theorem ixxf
StepHypRef Expression
1 ssrab2 3544 . . . 4  |-  { z  e.  RR*  |  (
x R z  /\  z S y ) } 
C_  RR*
2 xrex 11098 . . . . 5  |-  RR*  e.  _V
32elpw2 4563 . . . 4  |-  ( { z  e.  RR*  |  ( x R z  /\  z S y ) }  e.  ~P RR*  <->  { z  e.  RR*  |  ( x R z  /\  z S y ) } 
C_  RR* )
41, 3mpbir 209 . . 3  |-  { z  e.  RR*  |  (
x R z  /\  z S y ) }  e.  ~P RR*
54rgen2w 2900 . 2  |-  A. x  e.  RR*  A. y  e. 
RR*  { z  e.  RR*  |  ( x R z  /\  z S y ) }  e.  ~P RR*
6 ixx.1 . . 3  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
76fmpt2 6750 . 2  |-  ( A. x  e.  RR*  A. y  e.  RR*  { z  e. 
RR*  |  ( x R z  /\  z S y ) }  e.  ~P RR*  <->  O :
( RR*  X.  RR* ) --> ~P RR* )
85, 7mpbi 208 1  |-  O :
( RR*  X.  RR* ) --> ~P RR*
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2798   {crab 2802    C_ wss 3435   ~Pcpw 3967   class class class wbr 4399    X. cxp 4945   -->wf 5521    |-> cmpt2 6201   RR*cxr 9527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-fv 5533  df-oprab 6203  df-mpt2 6204  df-1st 6686  df-2nd 6687  df-xr 9532
This theorem is referenced by:  ixxex  11421  ixxssxr  11422  elixx3g  11423  ndmioo  11437  iccf  11504  iocpnfordt  18950  icomnfordt  18951  tpr2rico  26486
  Copyright terms: Public domain W3C validator