MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpiin Structured version   Unicode version

Theorem ixpiin 7503
Description: The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.)
Assertion
Ref Expression
ixpiin  |-  ( B  =/=  (/)  ->  X_ x  e.  A  |^|_ y  e.  B  C  =  |^|_ y  e.  B  X_ x  e.  A  C )
Distinct variable groups:    x, y, A    x, B, y
Allowed substitution hints:    C( x, y)

Proof of Theorem ixpiin
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 r19.28zv 3837 . . . 4  |-  ( B  =/=  (/)  ->  ( A. y  e.  B  (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C )  <->  ( f  Fn  A  /\  A. y  e.  B  A. x  e.  A  ( f `  x )  e.  C
) ) )
2 vex 3025 . . . . . 6  |-  f  e. 
_V
3 eliin 4248 . . . . . 6  |-  ( f  e.  _V  ->  (
f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  A. y  e.  B  f  e.  X_ x  e.  A  C
) )
42, 3ax-mp 5 . . . . 5  |-  ( f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  A. y  e.  B  f  e.  X_ x  e.  A  C )
52elixp 7484 . . . . . 6  |-  ( f  e.  X_ x  e.  A  C 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
65ralbii 2796 . . . . 5  |-  ( A. y  e.  B  f  e.  X_ x  e.  A  C 
<-> 
A. y  e.  B  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
74, 6bitri 252 . . . 4  |-  ( f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  A. y  e.  B  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C ) )
82elixp 7484 . . . . 5  |-  ( f  e.  X_ x  e.  A  |^|_ y  e.  B  C  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  |^|_ y  e.  B  C ) )
9 fvex 5835 . . . . . . . . 9  |-  ( f `
 x )  e. 
_V
10 eliin 4248 . . . . . . . . 9  |-  ( ( f `  x )  e.  _V  ->  (
( f `  x
)  e.  |^|_ y  e.  B  C  <->  A. y  e.  B  ( f `  x )  e.  C
) )
119, 10ax-mp 5 . . . . . . . 8  |-  ( ( f `  x )  e.  |^|_ y  e.  B  C 
<-> 
A. y  e.  B  ( f `  x
)  e.  C )
1211ralbii 2796 . . . . . . 7  |-  ( A. x  e.  A  (
f `  x )  e.  |^|_ y  e.  B  C 
<-> 
A. x  e.  A  A. y  e.  B  ( f `  x
)  e.  C )
13 ralcom 2928 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  B  (
f `  x )  e.  C  <->  A. y  e.  B  A. x  e.  A  ( f `  x
)  e.  C )
1412, 13bitri 252 . . . . . 6  |-  ( A. x  e.  A  (
f `  x )  e.  |^|_ y  e.  B  C 
<-> 
A. y  e.  B  A. x  e.  A  ( f `  x
)  e.  C )
1514anbi2i 698 . . . . 5  |-  ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  |^|_ y  e.  B  C )  <->  ( f  Fn  A  /\  A. y  e.  B  A. x  e.  A  ( f `  x )  e.  C
) )
168, 15bitri 252 . . . 4  |-  ( f  e.  X_ x  e.  A  |^|_ y  e.  B  C  <->  ( f  Fn  A  /\  A. y  e.  B  A. x  e.  A  (
f `  x )  e.  C ) )
171, 7, 163bitr4g 291 . . 3  |-  ( B  =/=  (/)  ->  ( f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  f  e.  X_ x  e.  A  |^|_ y  e.  B  C
) )
1817eqrdv 2426 . 2  |-  ( B  =/=  (/)  ->  |^|_ y  e.  B  X_ x  e.  A  C  =  X_ x  e.  A  |^|_ y  e.  B  C )
1918eqcomd 2434 1  |-  ( B  =/=  (/)  ->  X_ x  e.  A  |^|_ y  e.  B  C  =  |^|_ y  e.  B  X_ x  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2599   A.wral 2714   _Vcvv 3022   (/)c0 3704   |^|_ciin 4243    Fn wfn 5539   ` cfv 5544   X_cixp 7477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-nul 4498
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-iin 4245  df-br 4367  df-opab 4426  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-iota 5508  df-fun 5546  df-fn 5547  df-fv 5552  df-ixp 7478
This theorem is referenced by:  ixpint  7504  ptbasfi  20538
  Copyright terms: Public domain W3C validator