MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpiin Structured version   Unicode version

Theorem ixpiin 7488
Description: The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.)
Assertion
Ref Expression
ixpiin  |-  ( B  =/=  (/)  ->  X_ x  e.  A  |^|_ y  e.  B  C  =  |^|_ y  e.  B  X_ x  e.  A  C )
Distinct variable groups:    x, y, A    x, B, y
Allowed substitution hints:    C( x, y)

Proof of Theorem ixpiin
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 r19.28zv 3912 . . . 4  |-  ( B  =/=  (/)  ->  ( A. y  e.  B  (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C )  <->  ( f  Fn  A  /\  A. y  e.  B  A. x  e.  A  ( f `  x )  e.  C
) ) )
2 vex 3109 . . . . . 6  |-  f  e. 
_V
3 eliin 4321 . . . . . 6  |-  ( f  e.  _V  ->  (
f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  A. y  e.  B  f  e.  X_ x  e.  A  C
) )
42, 3ax-mp 5 . . . . 5  |-  ( f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  A. y  e.  B  f  e.  X_ x  e.  A  C )
52elixp 7469 . . . . . 6  |-  ( f  e.  X_ x  e.  A  C 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
65ralbii 2885 . . . . 5  |-  ( A. y  e.  B  f  e.  X_ x  e.  A  C 
<-> 
A. y  e.  B  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
74, 6bitri 249 . . . 4  |-  ( f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  A. y  e.  B  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C ) )
82elixp 7469 . . . . 5  |-  ( f  e.  X_ x  e.  A  |^|_ y  e.  B  C  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  |^|_ y  e.  B  C ) )
9 fvex 5858 . . . . . . . . 9  |-  ( f `
 x )  e. 
_V
10 eliin 4321 . . . . . . . . 9  |-  ( ( f `  x )  e.  _V  ->  (
( f `  x
)  e.  |^|_ y  e.  B  C  <->  A. y  e.  B  ( f `  x )  e.  C
) )
119, 10ax-mp 5 . . . . . . . 8  |-  ( ( f `  x )  e.  |^|_ y  e.  B  C 
<-> 
A. y  e.  B  ( f `  x
)  e.  C )
1211ralbii 2885 . . . . . . 7  |-  ( A. x  e.  A  (
f `  x )  e.  |^|_ y  e.  B  C 
<-> 
A. x  e.  A  A. y  e.  B  ( f `  x
)  e.  C )
13 ralcom 3015 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  B  (
f `  x )  e.  C  <->  A. y  e.  B  A. x  e.  A  ( f `  x
)  e.  C )
1412, 13bitri 249 . . . . . 6  |-  ( A. x  e.  A  (
f `  x )  e.  |^|_ y  e.  B  C 
<-> 
A. y  e.  B  A. x  e.  A  ( f `  x
)  e.  C )
1514anbi2i 692 . . . . 5  |-  ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  |^|_ y  e.  B  C )  <->  ( f  Fn  A  /\  A. y  e.  B  A. x  e.  A  ( f `  x )  e.  C
) )
168, 15bitri 249 . . . 4  |-  ( f  e.  X_ x  e.  A  |^|_ y  e.  B  C  <->  ( f  Fn  A  /\  A. y  e.  B  A. x  e.  A  (
f `  x )  e.  C ) )
171, 7, 163bitr4g 288 . . 3  |-  ( B  =/=  (/)  ->  ( f  e.  |^|_ y  e.  B  X_ x  e.  A  C  <->  f  e.  X_ x  e.  A  |^|_ y  e.  B  C
) )
1817eqrdv 2451 . 2  |-  ( B  =/=  (/)  ->  |^|_ y  e.  B  X_ x  e.  A  C  =  X_ x  e.  A  |^|_ y  e.  B  C )
1918eqcomd 2462 1  |-  ( B  =/=  (/)  ->  X_ x  e.  A  |^|_ y  e.  B  C  =  |^|_ y  e.  B  X_ x  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   _Vcvv 3106   (/)c0 3783   |^|_ciin 4316    Fn wfn 5565   ` cfv 5570   X_cixp 7462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-nul 4568
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iin 4318  df-br 4440  df-opab 4498  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fn 5573  df-fv 5578  df-ixp 7463
This theorem is referenced by:  ixpint  7489  ptbasfi  20248
  Copyright terms: Public domain W3C validator