MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpfi2 Structured version   Unicode version

Theorem ixpfi2 7876
Description: A Cartesian product of finite sets such that all but finitely many are singletons is finite. (Note that  B ( x ) and 
D ( x ) are both possibly dependent on  x. ) (Contributed by Mario Carneiro, 25-Jan-2015.)
Hypotheses
Ref Expression
ixpfi2.1  |-  ( ph  ->  C  e.  Fin )
ixpfi2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
ixpfi2.3  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  B  C_  { D } )
Assertion
Ref Expression
ixpfi2  |-  ( ph  -> 
X_ x  e.  A  B  e.  Fin )
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    D( x)

Proof of Theorem ixpfi2
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpfi2.1 . . . 4  |-  ( ph  ->  C  e.  Fin )
2 inss2 3684 . . . 4  |-  ( A  i^i  C )  C_  C
3 ssfi 7796 . . . 4  |-  ( ( C  e.  Fin  /\  ( A  i^i  C ) 
C_  C )  -> 
( A  i^i  C
)  e.  Fin )
41, 2, 3sylancl 667 . . 3  |-  ( ph  ->  ( A  i^i  C
)  e.  Fin )
5 inss1 3683 . . . 4  |-  ( A  i^i  C )  C_  A
6 ixpfi2.2 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
76ralrimiva 2840 . . . 4  |-  ( ph  ->  A. x  e.  A  B  e.  Fin )
8 ssralv 3526 . . . 4  |-  ( ( A  i^i  C ) 
C_  A  ->  ( A. x  e.  A  B  e.  Fin  ->  A. x  e.  ( A  i^i  C
) B  e.  Fin ) )
95, 7, 8mpsyl 66 . . 3  |-  ( ph  ->  A. x  e.  ( A  i^i  C ) B  e.  Fin )
10 ixpfi 7875 . . 3  |-  ( ( ( A  i^i  C
)  e.  Fin  /\  A. x  e.  ( A  i^i  C ) B  e.  Fin )  ->  X_ x  e.  ( A  i^i  C ) B  e.  Fin )
114, 9, 10syl2anc 666 . 2  |-  ( ph  -> 
X_ x  e.  ( A  i^i  C ) B  e.  Fin )
12 resixp 7563 . . . . 5  |-  ( ( ( A  i^i  C
)  C_  A  /\  f  e.  X_ x  e.  A  B )  -> 
( f  |`  ( A  i^i  C ) )  e.  X_ x  e.  ( A  i^i  C ) B )
135, 12mpan 675 . . . 4  |-  ( f  e.  X_ x  e.  A  B  ->  ( f  |`  ( A  i^i  C ) )  e.  X_ x  e.  ( A  i^i  C
) B )
1413a1i 11 . . 3  |-  ( ph  ->  ( f  e.  X_ x  e.  A  B  ->  ( f  |`  ( A  i^i  C ) )  e.  X_ x  e.  ( A  i^i  C ) B ) )
15 simprl 763 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  f  e.  X_ x  e.  A  B )
16 vex 3085 . . . . . . . . . . 11  |-  f  e. 
_V
1716elixp 7535 . . . . . . . . . 10  |-  ( f  e.  X_ x  e.  A  B 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
1815, 17sylib 200 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B ) )
1918simprd 465 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  A. x  e.  A  ( f `  x )  e.  B
)
20 simprr 765 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  g  e.  X_ x  e.  A  B )
21 vex 3085 . . . . . . . . . . 11  |-  g  e. 
_V
2221elixp 7535 . . . . . . . . . 10  |-  ( g  e.  X_ x  e.  A  B 
<->  ( g  Fn  A  /\  A. x  e.  A  ( g `  x
)  e.  B ) )
2320, 22sylib 200 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
g  Fn  A  /\  A. x  e.  A  ( g `  x )  e.  B ) )
2423simprd 465 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  A. x  e.  A  ( g `  x )  e.  B
)
25 r19.26 2956 . . . . . . . . 9  |-  ( A. x  e.  A  (
( f `  x
)  e.  B  /\  ( g `  x
)  e.  B )  <-> 
( A. x  e.  A  ( f `  x )  e.  B  /\  A. x  e.  A  ( g `  x
)  e.  B ) )
26 difss 3593 . . . . . . . . . . 11  |-  ( A 
\  C )  C_  A
27 ssralv 3526 . . . . . . . . . . 11  |-  ( ( A  \  C ) 
C_  A  ->  ( A. x  e.  A  ( ( f `  x )  e.  B  /\  ( g `  x
)  e.  B )  ->  A. x  e.  ( A  \  C ) ( ( f `  x )  e.  B  /\  ( g `  x
)  e.  B ) ) )
2826, 27ax-mp 5 . . . . . . . . . 10  |-  ( A. x  e.  A  (
( f `  x
)  e.  B  /\  ( g `  x
)  e.  B )  ->  A. x  e.  ( A  \  C ) ( ( f `  x )  e.  B  /\  ( g `  x
)  e.  B ) )
29 ixpfi2.3 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  B  C_  { D } )
3029sseld 3464 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  ( (
f `  x )  e.  B  ->  ( f `
 x )  e. 
{ D } ) )
31 elsni 4022 . . . . . . . . . . . . . . 15  |-  ( ( f `  x )  e.  { D }  ->  ( f `  x
)  =  D )
3230, 31syl6 35 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  ( (
f `  x )  e.  B  ->  ( f `
 x )  =  D ) )
3329sseld 3464 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  ( (
g `  x )  e.  B  ->  ( g `
 x )  e. 
{ D } ) )
34 elsni 4022 . . . . . . . . . . . . . . 15  |-  ( ( g `  x )  e.  { D }  ->  ( g `  x
)  =  D )
3533, 34syl6 35 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  ( (
g `  x )  e.  B  ->  ( g `
 x )  =  D ) )
3632, 35anim12d 566 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  ( (
( f `  x
)  e.  B  /\  ( g `  x
)  e.  B )  ->  ( ( f `
 x )  =  D  /\  ( g `
 x )  =  D ) ) )
37 eqtr3 2451 . . . . . . . . . . . . 13  |-  ( ( ( f `  x
)  =  D  /\  ( g `  x
)  =  D )  ->  ( f `  x )  =  ( g `  x ) )
3836, 37syl6 35 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  \  C ) )  ->  ( (
( f `  x
)  e.  B  /\  ( g `  x
)  e.  B )  ->  ( f `  x )  =  ( g `  x ) ) )
3938ralimdva 2834 . . . . . . . . . . 11  |-  ( ph  ->  ( A. x  e.  ( A  \  C
) ( ( f `
 x )  e.  B  /\  ( g `
 x )  e.  B )  ->  A. x  e.  ( A  \  C
) ( f `  x )  =  ( g `  x ) ) )
4039adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  ( A. x  e.  ( A  \  C ) ( ( f `  x
)  e.  B  /\  ( g `  x
)  e.  B )  ->  A. x  e.  ( A  \  C ) ( f `  x
)  =  ( g `
 x ) ) )
4128, 40syl5 34 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  ( A. x  e.  A  ( ( f `  x )  e.  B  /\  ( g `  x
)  e.  B )  ->  A. x  e.  ( A  \  C ) ( f `  x
)  =  ( g `
 x ) ) )
4225, 41syl5bir 222 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
( A. x  e.  A  ( f `  x )  e.  B  /\  A. x  e.  A  ( g `  x
)  e.  B )  ->  A. x  e.  ( A  \  C ) ( f `  x
)  =  ( g `
 x ) ) )
4319, 24, 42mp2and 684 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  A. x  e.  ( A  \  C
) ( f `  x )  =  ( g `  x ) )
4443biantrud 510 . . . . . 6  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  ( A. x  e.  ( A  i^i  C ) ( f `  x )  =  ( g `  x )  <->  ( A. x  e.  ( A  i^i  C ) ( f `
 x )  =  ( g `  x
)  /\  A. x  e.  ( A  \  C
) ( f `  x )  =  ( g `  x ) ) ) )
45 fvres 5893 . . . . . . . 8  |-  ( x  e.  ( A  i^i  C )  ->  ( (
f  |`  ( A  i^i  C ) ) `  x
)  =  ( f `
 x ) )
46 fvres 5893 . . . . . . . 8  |-  ( x  e.  ( A  i^i  C )  ->  ( (
g  |`  ( A  i^i  C ) ) `  x
)  =  ( g `
 x ) )
4745, 46eqeq12d 2445 . . . . . . 7  |-  ( x  e.  ( A  i^i  C )  ->  ( (
( f  |`  ( A  i^i  C ) ) `
 x )  =  ( ( g  |`  ( A  i^i  C ) ) `  x )  <-> 
( f `  x
)  =  ( g `
 x ) ) )
4847ralbiia 2856 . . . . . 6  |-  ( A. x  e.  ( A  i^i  C ) ( ( f  |`  ( A  i^i  C ) ) `  x )  =  ( ( g  |`  ( A  i^i  C ) ) `
 x )  <->  A. x  e.  ( A  i^i  C
) ( f `  x )  =  ( g `  x ) )
49 inundif 3874 . . . . . . . 8  |-  ( ( A  i^i  C )  u.  ( A  \  C ) )  =  A
5049raleqi 3030 . . . . . . 7  |-  ( A. x  e.  ( ( A  i^i  C )  u.  ( A  \  C
) ) ( f `
 x )  =  ( g `  x
)  <->  A. x  e.  A  ( f `  x
)  =  ( g `
 x ) )
51 ralunb 3648 . . . . . . 7  |-  ( A. x  e.  ( ( A  i^i  C )  u.  ( A  \  C
) ) ( f `
 x )  =  ( g `  x
)  <->  ( A. x  e.  ( A  i^i  C
) ( f `  x )  =  ( g `  x )  /\  A. x  e.  ( A  \  C
) ( f `  x )  =  ( g `  x ) ) )
5250, 51bitr3i 255 . . . . . 6  |-  ( A. x  e.  A  (
f `  x )  =  ( g `  x )  <->  ( A. x  e.  ( A  i^i  C ) ( f `
 x )  =  ( g `  x
)  /\  A. x  e.  ( A  \  C
) ( f `  x )  =  ( g `  x ) ) )
5344, 48, 523bitr4g 292 . . . . 5  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  ( A. x  e.  ( A  i^i  C ) ( ( f  |`  ( A  i^i  C ) ) `
 x )  =  ( ( g  |`  ( A  i^i  C ) ) `  x )  <->  A. x  e.  A  ( f `  x
)  =  ( g `
 x ) ) )
5418simpld 461 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  f  Fn  A )
55 fnssres 5705 . . . . . . 7  |-  ( ( f  Fn  A  /\  ( A  i^i  C ) 
C_  A )  -> 
( f  |`  ( A  i^i  C ) )  Fn  ( A  i^i  C ) )
5654, 5, 55sylancl 667 . . . . . 6  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
f  |`  ( A  i^i  C ) )  Fn  ( A  i^i  C ) )
5723simpld 461 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  g  Fn  A )
58 fnssres 5705 . . . . . . 7  |-  ( ( g  Fn  A  /\  ( A  i^i  C ) 
C_  A )  -> 
( g  |`  ( A  i^i  C ) )  Fn  ( A  i^i  C ) )
5957, 5, 58sylancl 667 . . . . . 6  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
g  |`  ( A  i^i  C ) )  Fn  ( A  i^i  C ) )
60 eqfnfv 5989 . . . . . 6  |-  ( ( ( f  |`  ( A  i^i  C ) )  Fn  ( A  i^i  C )  /\  ( g  |`  ( A  i^i  C
) )  Fn  ( A  i^i  C ) )  ->  ( ( f  |`  ( A  i^i  C
) )  =  ( g  |`  ( A  i^i  C ) )  <->  A. x  e.  ( A  i^i  C
) ( ( f  |`  ( A  i^i  C
) ) `  x
)  =  ( ( g  |`  ( A  i^i  C ) ) `  x ) ) )
6156, 59, 60syl2anc 666 . . . . 5  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
( f  |`  ( A  i^i  C ) )  =  ( g  |`  ( A  i^i  C ) )  <->  A. x  e.  ( A  i^i  C ) ( ( f  |`  ( A  i^i  C ) ) `  x )  =  ( ( g  |`  ( A  i^i  C
) ) `  x
) ) )
62 eqfnfv 5989 . . . . . 6  |-  ( ( f  Fn  A  /\  g  Fn  A )  ->  ( f  =  g  <->  A. x  e.  A  ( f `  x
)  =  ( g `
 x ) ) )
6354, 57, 62syl2anc 666 . . . . 5  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
f  =  g  <->  A. x  e.  A  ( f `  x )  =  ( g `  x ) ) )
6453, 61, 633bitr4d 289 . . . 4  |-  ( (
ph  /\  ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
) )  ->  (
( f  |`  ( A  i^i  C ) )  =  ( g  |`  ( A  i^i  C ) )  <->  f  =  g ) )
6564ex 436 . . 3  |-  ( ph  ->  ( ( f  e.  X_ x  e.  A  B  /\  g  e.  X_ x  e.  A  B
)  ->  ( (
f  |`  ( A  i^i  C ) )  =  ( g  |`  ( A  i^i  C ) )  <->  f  =  g ) ) )
6614, 65dom2lem 7614 . 2  |-  ( ph  ->  ( f  e.  X_ x  e.  A  B  |->  ( f  |`  ( A  i^i  C ) ) ) : X_ x  e.  A  B -1-1-> X_ x  e.  ( A  i^i  C
) B )
67 f1fi 7865 . 2  |-  ( (
X_ x  e.  ( A  i^i  C ) B  e.  Fin  /\  ( f  e.  X_ x  e.  A  B  |->  ( f  |`  ( A  i^i  C ) ) ) : X_ x  e.  A  B -1-1-> X_ x  e.  ( A  i^i  C
) B )  ->  X_ x  e.  A  B  e.  Fin )
6811, 66, 67syl2anc 666 1  |-  ( ph  -> 
X_ x  e.  A  B  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1869   A.wral 2776    \ cdif 3434    u. cun 3435    i^i cin 3436    C_ wss 3437   {csn 3997    |-> cmpt 4480    |` cres 4853    Fn wfn 5594   -1-1->wf1 5596   ` cfv 5599   X_cixp 7528   Fincfn 7575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-2o 7189  df-oadd 7192  df-er 7369  df-map 7480  df-pm 7481  df-ixp 7529  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579
This theorem is referenced by:  psrbaglefi  18589  eulerpartlemb  29203
  Copyright terms: Public domain W3C validator