MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpf Structured version   Unicode version

Theorem ixpf 7488
Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
ixpf  |-  ( F  e.  X_ x  e.  A  B  ->  F : A --> U_ x  e.  A  B
)
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    B( x)

Proof of Theorem ixpf
StepHypRef Expression
1 elixp2 7470 . 2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
2 ssiun2 4368 . . . . . . 7  |-  ( x  e.  A  ->  B  C_ 
U_ x  e.  A  B )
32sseld 3503 . . . . . 6  |-  ( x  e.  A  ->  (
( F `  x
)  e.  B  -> 
( F `  x
)  e.  U_ x  e.  A  B )
)
43ralimia 2855 . . . . 5  |-  ( A. x  e.  A  ( F `  x )  e.  B  ->  A. x  e.  A  ( F `  x )  e.  U_ x  e.  A  B
)
54anim2i 569 . . . 4  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  -> 
( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  U_ x  e.  A  B ) )
6 nfcv 2629 . . . . 5  |-  F/_ x A
7 nfiu1 4355 . . . . 5  |-  F/_ x U_ x  e.  A  B
8 nfcv 2629 . . . . 5  |-  F/_ x F
96, 7, 8ffnfvf 6046 . . . 4  |-  ( F : A --> U_ x  e.  A  B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  U_ x  e.  A  B
) )
105, 9sylibr 212 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  F : A --> U_ x  e.  A  B )
11103adant1 1014 . 2  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  F : A --> U_ x  e.  A  B )
121, 11sylbi 195 1  |-  ( F  e.  X_ x  e.  A  B  ->  F : A --> U_ x  e.  A  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    e. wcel 1767   A.wral 2814   _Vcvv 3113   U_ciun 4325    Fn wfn 5581   -->wf 5582   ` cfv 5586   X_cixp 7466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fv 5594  df-ixp 7467
This theorem is referenced by:  uniixp  7489  ixpssmap2g  7495
  Copyright terms: Public domain W3C validator