MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq2dv Structured version   Unicode version

Theorem ixpeq2dv 7487
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq2dv.1  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
ixpeq2dv  |-  ( ph  -> 
X_ x  e.  A  B  =  X_ x  e.  A  C )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem ixpeq2dv
StepHypRef Expression
1 ixpeq2dv.1 . . 3  |-  ( ph  ->  B  =  C )
21adantr 465 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
32ixpeq2dva 7486 1  |-  ( ph  -> 
X_ x  e.  A  B  =  X_ x  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1383    e. wcel 1804   X_cixp 7471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ral 2798  df-in 3468  df-ss 3475  df-ixp 7472
This theorem is referenced by:  prdsval  14834  brssc  15165  isfunc  15212  natfval  15294  isnat  15295  dprdval  17013  dprdvalOLD  17015  elpt  20051  elptr  20052  dfac14  20097
  Copyright terms: Public domain W3C validator