MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixp0 Structured version   Unicode version

Theorem ixp0 7409
Description: The infinite Cartesian product of a family  B ( x ) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 8767. (Contributed by NM, 1-Oct-2006.) (Proof shortened by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
ixp0  |-  ( E. x  e.  A  B  =  (/)  ->  X_ x  e.  A  B  =  (/) )

Proof of Theorem ixp0
StepHypRef Expression
1 nne 2654 . . . 4  |-  ( -.  B  =/=  (/)  <->  B  =  (/) )
21rexbii 2862 . . 3  |-  ( E. x  e.  A  -.  B  =/=  (/)  <->  E. x  e.  A  B  =  (/) )
3 rexnal 2854 . . 3  |-  ( E. x  e.  A  -.  B  =/=  (/)  <->  -.  A. x  e.  A  B  =/=  (/) )
42, 3bitr3i 251 . 2  |-  ( E. x  e.  A  B  =  (/)  <->  -.  A. x  e.  A  B  =/=  (/) )
5 ixpn0 7408 . . 3  |-  ( X_ x  e.  A  B  =/=  (/)  ->  A. x  e.  A  B  =/=  (/) )
65necon1bi 2685 . 2  |-  ( -. 
A. x  e.  A  B  =/=  (/)  ->  X_ x  e.  A  B  =  (/) )
74, 6sylbi 195 1  |-  ( E. x  e.  A  B  =  (/)  ->  X_ x  e.  A  B  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1370    =/= wne 2648   A.wral 2799   E.wrex 2800   (/)c0 3748   X_cixp 7376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-v 3080  df-dif 3442  df-nul 3749  df-ixp 7377
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator