MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxdif2 Structured version   Unicode version

Theorem iunxdif2 4363
Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.)
Hypothesis
Ref Expression
iunxdif2.1  |-  ( x  =  y  ->  C  =  D )
Assertion
Ref Expression
iunxdif2  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) C  C_  D  ->  U_ y  e.  ( A  \  B ) D  =  U_ x  e.  A  C )
Distinct variable groups:    x, y, A    x, B, y    y, C    x, D
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem iunxdif2
StepHypRef Expression
1 iunss2 4360 . . 3  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) C  C_  D  ->  U_ x  e.  A  C  C_  U_ y  e.  ( A  \  B
) D )
2 difss 3617 . . . . 5  |-  ( A 
\  B )  C_  A
3 iunss1 4327 . . . . 5  |-  ( ( A  \  B ) 
C_  A  ->  U_ y  e.  ( A  \  B
) D  C_  U_ y  e.  A  D )
42, 3ax-mp 5 . . . 4  |-  U_ y  e.  ( A  \  B
) D  C_  U_ y  e.  A  D
5 iunxdif2.1 . . . . 5  |-  ( x  =  y  ->  C  =  D )
65cbviunv 4354 . . . 4  |-  U_ x  e.  A  C  =  U_ y  e.  A  D
74, 6sseqtr4i 3522 . . 3  |-  U_ y  e.  ( A  \  B
) D  C_  U_ x  e.  A  C
81, 7jctil 535 . 2  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) C  C_  D  ->  ( U_ y  e.  ( A  \  B
) D  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ y  e.  ( A  \  B ) D ) )
9 eqss 3504 . 2  |-  ( U_ y  e.  ( A  \  B ) D  = 
U_ x  e.  A  C 
<->  ( U_ y  e.  ( A  \  B
) D  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ y  e.  ( A  \  B ) D ) )
108, 9sylibr 212 1  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) C  C_  D  ->  U_ y  e.  ( A  \  B ) D  =  U_ x  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398   A.wral 2804   E.wrex 2805    \ cdif 3458    C_ wss 3461   U_ciun 4315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2809  df-rex 2810  df-v 3108  df-dif 3464  df-in 3468  df-ss 3475  df-iun 4317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator