MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunun Structured version   Unicode version

Theorem iunun 4406
Description: Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iunun  |-  U_ x  e.  A  ( B  u.  C )  =  (
U_ x  e.  A  B  u.  U_ x  e.  A  C )

Proof of Theorem iunun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.43 3017 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  \/  y  e.  C )  <->  ( E. x  e.  A  y  e.  B  \/  E. x  e.  A  y  e.  C ) )
2 elun 3645 . . . . 5  |-  ( y  e.  ( B  u.  C )  <->  ( y  e.  B  \/  y  e.  C ) )
32rexbii 2965 . . . 4  |-  ( E. x  e.  A  y  e.  ( B  u.  C )  <->  E. x  e.  A  ( y  e.  B  \/  y  e.  C ) )
4 eliun 4330 . . . . 5  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
5 eliun 4330 . . . . 5  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
64, 5orbi12i 521 . . . 4  |-  ( ( y  e.  U_ x  e.  A  B  \/  y  e.  U_ x  e.  A  C )  <->  ( E. x  e.  A  y  e.  B  \/  E. x  e.  A  y  e.  C ) )
71, 3, 63bitr4i 277 . . 3  |-  ( E. x  e.  A  y  e.  ( B  u.  C )  <->  ( y  e.  U_ x  e.  A  B  \/  y  e.  U_ x  e.  A  C
) )
8 eliun 4330 . . 3  |-  ( y  e.  U_ x  e.  A  ( B  u.  C )  <->  E. x  e.  A  y  e.  ( B  u.  C
) )
9 elun 3645 . . 3  |-  ( y  e.  ( U_ x  e.  A  B  u.  U_ x  e.  A  C
)  <->  ( y  e. 
U_ x  e.  A  B  \/  y  e.  U_ x  e.  A  C
) )
107, 8, 93bitr4i 277 . 2  |-  ( y  e.  U_ x  e.  A  ( B  u.  C )  <->  y  e.  ( U_ x  e.  A  B  u.  U_ x  e.  A  C ) )
1110eqriv 2463 1  |-  U_ x  e.  A  ( B  u.  C )  =  (
U_ x  e.  A  B  u.  U_ x  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:    \/ wo 368    = wceq 1379    e. wcel 1767   E.wrex 2815    u. cun 3474   U_ciun 4325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-rex 2820  df-v 3115  df-un 3481  df-iun 4327
This theorem is referenced by:  iununi  4410  oarec  7212  comppfsc  19860  uniiccdif  21814  dftrpred4g  29170  bnj1415  33390
  Copyright terms: Public domain W3C validator