MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunrab Structured version   Unicode version

Theorem iunrab 4328
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
iunrab  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  E. x  e.  A  ph }
Distinct variable groups:    y, A    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem iunrab
StepHypRef Expression
1 iunab 4327 . 2  |-  U_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }  =  { y  |  E. x  e.  A  ( y  e.  B  /\  ph ) }
2 df-rab 2808 . . . 4  |-  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) }
32a1i 11 . . 3  |-  ( x  e.  A  ->  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) } )
43iuneq2i 4300 . 2  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  U_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }
5 df-rab 2808 . . 3  |-  { y  e.  B  |  E. x  e.  A  ph }  =  { y  |  ( y  e.  B  /\  E. x  e.  A  ph ) }
6 r19.42v 2981 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  /\  ph )  <->  ( y  e.  B  /\  E. x  e.  A  ph ) )
76abbii 2588 . . 3  |-  { y  |  E. x  e.  A  ( y  e.  B  /\  ph ) }  =  { y  |  ( y  e.  B  /\  E. x  e.  A  ph ) }
85, 7eqtr4i 2486 . 2  |-  { y  e.  B  |  E. x  e.  A  ph }  =  { y  |  E. x  e.  A  (
y  e.  B  /\  ph ) }
91, 4, 83eqtr4i 2493 1  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  E. x  e.  A  ph }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1370    e. wcel 1758   {cab 2439   E.wrex 2800   {crab 2803   U_ciun 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-in 3446  df-ss 3453  df-iun 4284
This theorem is referenced by:  incexc2  13423  itg2monolem1  21371  aannenlem1  21937  musum  22674  lgsquadlem1  22836  lgsquadlem2  22837  iunpreima  26093  cnambfre  28611  fiphp3d  29329  phisum  29738  mapdval3N  35639  mapdval5N  35641
  Copyright terms: Public domain W3C validator