MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunrab Structured version   Unicode version

Theorem iunrab 4378
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
iunrab  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  E. x  e.  A  ph }
Distinct variable groups:    y, A    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem iunrab
StepHypRef Expression
1 iunab 4377 . 2  |-  U_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }  =  { y  |  E. x  e.  A  ( y  e.  B  /\  ph ) }
2 df-rab 2826 . . . 4  |-  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) }
32a1i 11 . . 3  |-  ( x  e.  A  ->  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) } )
43iuneq2i 4350 . 2  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  U_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }
5 df-rab 2826 . . 3  |-  { y  e.  B  |  E. x  e.  A  ph }  =  { y  |  ( y  e.  B  /\  E. x  e.  A  ph ) }
6 r19.42v 3021 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  /\  ph )  <->  ( y  e.  B  /\  E. x  e.  A  ph ) )
76abbii 2601 . . 3  |-  { y  |  E. x  e.  A  ( y  e.  B  /\  ph ) }  =  { y  |  ( y  e.  B  /\  E. x  e.  A  ph ) }
85, 7eqtr4i 2499 . 2  |-  { y  e.  B  |  E. x  e.  A  ph }  =  { y  |  E. x  e.  A  (
y  e.  B  /\  ph ) }
91, 4, 83eqtr4i 2506 1  |-  U_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  E. x  e.  A  ph }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   E.wrex 2818   {crab 2821   U_ciun 4331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-in 3488  df-ss 3495  df-iun 4333
This theorem is referenced by:  incexc2  13630  itg2monolem1  22025  aannenlem1  22591  musum  23333  lgsquadlem1  23495  lgsquadlem2  23496  iunpreima  27255  cnambfre  29990  fiphp3d  30681  phisum  31088  mapdval3N  36829  mapdval5N  36831
  Copyright terms: Public domain W3C validator