MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunpw Structured version   Unicode version

Theorem iunpw 6595
Description: An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Hypothesis
Ref Expression
iunpw.1  |-  A  e. 
_V
Assertion
Ref Expression
iunpw  |-  ( E. x  e.  A  x  =  U. A  <->  ~P U. A  =  U_ x  e.  A  ~P x )
Distinct variable group:    x, A

Proof of Theorem iunpw
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sseq2 3463 . . . . . . . 8  |-  ( x  =  U. A  -> 
( y  C_  x  <->  y 
C_  U. A ) )
21biimprcd 225 . . . . . . 7  |-  ( y 
C_  U. A  ->  (
x  =  U. A  ->  y  C_  x )
)
32reximdv 2877 . . . . . 6  |-  ( y 
C_  U. A  ->  ( E. x  e.  A  x  =  U. A  ->  E. x  e.  A  y  C_  x ) )
43com12 29 . . . . 5  |-  ( E. x  e.  A  x  =  U. A  -> 
( y  C_  U. A  ->  E. x  e.  A  y  C_  x ) )
5 ssiun 4312 . . . . . 6  |-  ( E. x  e.  A  y 
C_  x  ->  y  C_ 
U_ x  e.  A  x )
6 uniiun 4323 . . . . . 6  |-  U. A  =  U_ x  e.  A  x
75, 6syl6sseqr 3488 . . . . 5  |-  ( E. x  e.  A  y 
C_  x  ->  y  C_ 
U. A )
84, 7impbid1 203 . . . 4  |-  ( E. x  e.  A  x  =  U. A  -> 
( y  C_  U. A  <->  E. x  e.  A  y 
C_  x ) )
9 selpw 3961 . . . 4  |-  ( y  e.  ~P U. A  <->  y 
C_  U. A )
10 eliun 4275 . . . . 5  |-  ( y  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  y  e.  ~P x )
11 selpw 3961 . . . . . 6  |-  ( y  e.  ~P x  <->  y  C_  x )
1211rexbii 2905 . . . . 5  |-  ( E. x  e.  A  y  e.  ~P x  <->  E. x  e.  A  y  C_  x )
1310, 12bitri 249 . . . 4  |-  ( y  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  y  C_  x )
148, 9, 133bitr4g 288 . . 3  |-  ( E. x  e.  A  x  =  U. A  -> 
( y  e.  ~P U. A  <->  y  e.  U_ x  e.  A  ~P x ) )
1514eqrdv 2399 . 2  |-  ( E. x  e.  A  x  =  U. A  ->  ~P U. A  =  U_ x  e.  A  ~P x )
16 ssid 3460 . . . . 5  |-  U. A  C_ 
U. A
17 iunpw.1 . . . . . . . 8  |-  A  e. 
_V
1817uniex 6577 . . . . . . 7  |-  U. A  e.  _V
1918elpw 3960 . . . . . 6  |-  ( U. A  e.  ~P U. A  <->  U. A  C_  U. A )
20 eleq2 2475 . . . . . 6  |-  ( ~P
U. A  =  U_ x  e.  A  ~P x  ->  ( U. A  e.  ~P U. A  <->  U. A  e. 
U_ x  e.  A  ~P x ) )
2119, 20syl5bbr 259 . . . . 5  |-  ( ~P
U. A  =  U_ x  e.  A  ~P x  ->  ( U. A  C_ 
U. A  <->  U. A  e. 
U_ x  e.  A  ~P x ) )
2216, 21mpbii 211 . . . 4  |-  ( ~P
U. A  =  U_ x  e.  A  ~P x  ->  U. A  e.  U_ x  e.  A  ~P x )
23 eliun 4275 . . . 4  |-  ( U. A  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  U. A  e. 
~P x )
2422, 23sylib 196 . . 3  |-  ( ~P
U. A  =  U_ x  e.  A  ~P x  ->  E. x  e.  A  U. A  e.  ~P x )
25 elssuni 4219 . . . . . . 7  |-  ( x  e.  A  ->  x  C_ 
U. A )
26 elpwi 3963 . . . . . . 7  |-  ( U. A  e.  ~P x  ->  U. A  C_  x
)
2725, 26anim12i 564 . . . . . 6  |-  ( ( x  e.  A  /\  U. A  e.  ~P x
)  ->  ( x  C_ 
U. A  /\  U. A  C_  x ) )
28 eqss 3456 . . . . . 6  |-  ( x  =  U. A  <->  ( x  C_ 
U. A  /\  U. A  C_  x ) )
2927, 28sylibr 212 . . . . 5  |-  ( ( x  e.  A  /\  U. A  e.  ~P x
)  ->  x  =  U. A )
3029ex 432 . . . 4  |-  ( x  e.  A  ->  ( U. A  e.  ~P x  ->  x  =  U. A ) )
3130reximia 2869 . . 3  |-  ( E. x  e.  A  U. A  e.  ~P x  ->  E. x  e.  A  x  =  U. A )
3224, 31syl 17 . 2  |-  ( ~P
U. A  =  U_ x  e.  A  ~P x  ->  E. x  e.  A  x  =  U. A )
3315, 32impbii 188 1  |-  ( E. x  e.  A  x  =  U. A  <->  ~P U. A  =  U_ x  e.  A  ~P x )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   E.wrex 2754   _Vcvv 3058    C_ wss 3413   ~Pcpw 3954   U.cuni 4190   U_ciun 4270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-an 369  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ral 2758  df-rex 2759  df-v 3060  df-in 3420  df-ss 3427  df-pw 3956  df-uni 4191  df-iun 4272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator