MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmbl2 Structured version   Unicode version

Theorem iunmbl2 21156
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
iunmbl2  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  B  e.  dom  vol )  ->  U_ n  e.  A  B  e.  dom  vol )
Distinct variable group:    A, n
Allowed substitution hint:    B( n)

Proof of Theorem iunmbl2
Dummy variables  f 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 7441 . . 3  |-  ( A  ~<_  NN  <->  ( A  ~<  NN  \/  A  ~~  NN ) )
2 nnenom 11905 . . . . . 6  |-  NN  ~~  om
3 sdomentr 7547 . . . . . 6  |-  ( ( A  ~<  NN  /\  NN  ~~ 
om )  ->  A  ~<  om )
42, 3mpan2 671 . . . . 5  |-  ( A 
~<  NN  ->  A  ~<  om )
5 isfinite 7961 . . . . . 6  |-  ( A  e.  Fin  <->  A  ~<  om )
6 finiunmbl 21143 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A. n  e.  A  B  e.  dom  vol )  ->  U_ n  e.  A  B  e.  dom  vol )
76ex 434 . . . . . 6  |-  ( A  e.  Fin  ->  ( A. n  e.  A  B  e.  dom  vol  ->  U_ n  e.  A  B  e.  dom  vol ) )
85, 7sylbir 213 . . . . 5  |-  ( A 
~<  om  ->  ( A. n  e.  A  B  e.  dom  vol  ->  U_ n  e.  A  B  e.  dom  vol ) )
94, 8syl 16 . . . 4  |-  ( A 
~<  NN  ->  ( A. n  e.  A  B  e.  dom  vol  ->  U_ n  e.  A  B  e.  dom  vol ) )
10 bren 7421 . . . . 5  |-  ( A 
~~  NN  <->  E. f  f : A -1-1-onto-> NN )
11 nfv 1674 . . . . . . . . . . . . 13  |-  F/ n  f : A -1-1-onto-> NN
12 nfcv 2613 . . . . . . . . . . . . . 14  |-  F/_ n NN
13 nfcsb1v 3404 . . . . . . . . . . . . . . 15  |-  F/_ n [_ ( `' f `  k )  /  n ]_ B
1413nfcri 2606 . . . . . . . . . . . . . 14  |-  F/ n  x  e.  [_ ( `' f `  k )  /  n ]_ B
1512, 14nfrex 2882 . . . . . . . . . . . . 13  |-  F/ n E. k  e.  NN  x  e.  [_ ( `' f `  k )  /  n ]_ B
16 f1of 5741 . . . . . . . . . . . . . . . . 17  |-  ( f : A -1-1-onto-> NN  ->  f : A
--> NN )
1716ffvelrnda 5944 . . . . . . . . . . . . . . . 16  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A )  ->  ( f `  n
)  e.  NN )
18173adant3 1008 . . . . . . . . . . . . . . 15  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  ( f `  n
)  e.  NN )
19 simp3 990 . . . . . . . . . . . . . . . 16  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  x  e.  B )
20 f1ocnvfv1 6084 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A )  ->  ( `' f `  ( f `  n
) )  =  n )
21203adant3 1008 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  ( `' f `  ( f `  n
) )  =  n )
2221eqcomd 2459 . . . . . . . . . . . . . . . . 17  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  n  =  ( `' f `  ( f `
 n ) ) )
23 csbeq1a 3397 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( `' f `
 ( f `  n ) )  ->  B  =  [_ ( `' f `  ( f `
 n ) )  /  n ]_ B
)
2422, 23syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  B  =  [_ ( `' f `  (
f `  n )
)  /  n ]_ B )
2519, 24eleqtrd 2541 . . . . . . . . . . . . . . 15  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  x  e.  [_ ( `' f `  (
f `  n )
)  /  n ]_ B )
26 fveq2 5791 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( f `  n )  ->  ( `' f `  k
)  =  ( `' f `  ( f `
 n ) ) )
2726csbeq1d 3395 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( f `  n )  ->  [_ ( `' f `  k
)  /  n ]_ B  =  [_ ( `' f `  ( f `
 n ) )  /  n ]_ B
)
2827eleq2d 2521 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( f `  n )  ->  (
x  e.  [_ ( `' f `  k
)  /  n ]_ B 
<->  x  e.  [_ ( `' f `  (
f `  n )
)  /  n ]_ B ) )
2928rspcev 3171 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  n
)  e.  NN  /\  x  e.  [_ ( `' f `  ( f `
 n ) )  /  n ]_ B
)  ->  E. k  e.  NN  x  e.  [_ ( `' f `  k
)  /  n ]_ B )
3018, 25, 29syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( f : A -1-1-onto-> NN  /\  n  e.  A  /\  x  e.  B )  ->  E. k  e.  NN  x  e.  [_ ( `' f `  k )  /  n ]_ B
)
31303exp 1187 . . . . . . . . . . . . 13  |-  ( f : A -1-1-onto-> NN  ->  ( n  e.  A  ->  ( x  e.  B  ->  E. k  e.  NN  x  e.  [_ ( `' f `  k
)  /  n ]_ B ) ) )
3211, 15, 31rexlimd 2936 . . . . . . . . . . . 12  |-  ( f : A -1-1-onto-> NN  ->  ( E. n  e.  A  x  e.  B  ->  E. k  e.  NN  x  e.  [_ ( `' f `  k
)  /  n ]_ B ) )
33 f1ocnvdm 6090 . . . . . . . . . . . . . 14  |-  ( ( f : A -1-1-onto-> NN  /\  k  e.  NN )  ->  ( `' f `  k )  e.  A
)
34 csbeq1a 3397 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( `' f `
 k )  ->  B  =  [_ ( `' f `  k )  /  n ]_ B
)
3534eleq2d 2521 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( `' f `
 k )  -> 
( x  e.  B  <->  x  e.  [_ ( `' f `  k )  /  n ]_ B
) )
3614, 35rspce 3166 . . . . . . . . . . . . . . 15  |-  ( ( ( `' f `  k )  e.  A  /\  x  e.  [_ ( `' f `  k
)  /  n ]_ B )  ->  E. n  e.  A  x  e.  B )
3736ex 434 . . . . . . . . . . . . . 14  |-  ( ( `' f `  k
)  e.  A  -> 
( x  e.  [_ ( `' f `  k
)  /  n ]_ B  ->  E. n  e.  A  x  e.  B )
)
3833, 37syl 16 . . . . . . . . . . . . 13  |-  ( ( f : A -1-1-onto-> NN  /\  k  e.  NN )  ->  ( x  e.  [_ ( `' f `  k
)  /  n ]_ B  ->  E. n  e.  A  x  e.  B )
)
3938rexlimdva 2939 . . . . . . . . . . . 12  |-  ( f : A -1-1-onto-> NN  ->  ( E. k  e.  NN  x  e.  [_ ( `' f `
 k )  /  n ]_ B  ->  E. n  e.  A  x  e.  B ) )
4032, 39impbid 191 . . . . . . . . . . 11  |-  ( f : A -1-1-onto-> NN  ->  ( E. n  e.  A  x  e.  B  <->  E. k  e.  NN  x  e.  [_ ( `' f `  k )  /  n ]_ B
) )
41 eliun 4275 . . . . . . . . . . 11  |-  ( x  e.  U_ n  e.  A  B  <->  E. n  e.  A  x  e.  B )
42 eliun 4275 . . . . . . . . . . 11  |-  ( x  e.  U_ k  e.  NN  [_ ( `' f `  k )  /  n ]_ B  <->  E. k  e.  NN  x  e.  [_ ( `' f `
 k )  /  n ]_ B )
4340, 41, 423bitr4g 288 . . . . . . . . . 10  |-  ( f : A -1-1-onto-> NN  ->  ( x  e.  U_ n  e.  A  B 
<->  x  e.  U_ k  e.  NN  [_ ( `' f `  k )  /  n ]_ B
) )
4443eqrdv 2448 . . . . . . . . 9  |-  ( f : A -1-1-onto-> NN  ->  U_ n  e.  A  B  =  U_ k  e.  NN  [_ ( `' f `  k
)  /  n ]_ B )
4544adantr 465 . . . . . . . 8  |-  ( ( f : A -1-1-onto-> NN  /\  A. n  e.  A  B  e.  dom  vol )  ->  U_ n  e.  A  B  =  U_ k  e.  NN  [_ ( `' f `  k )  /  n ]_ B
)
46 rspcsbela 3805 . . . . . . . . . . . 12  |-  ( ( ( `' f `  k )  e.  A  /\  A. n  e.  A  B  e.  dom  vol )  ->  [_ ( `' f `
 k )  /  n ]_ B  e.  dom  vol )
4733, 46sylan 471 . . . . . . . . . . 11  |-  ( ( ( f : A -1-1-onto-> NN  /\  k  e.  NN )  /\  A. n  e.  A  B  e.  dom  vol )  ->  [_ ( `' f `  k )  /  n ]_ B  e.  dom  vol )
4847an32s 802 . . . . . . . . . 10  |-  ( ( ( f : A -1-1-onto-> NN  /\ 
A. n  e.  A  B  e.  dom  vol )  /\  k  e.  NN )  ->  [_ ( `' f `
 k )  /  n ]_ B  e.  dom  vol )
4948ralrimiva 2822 . . . . . . . . 9  |-  ( ( f : A -1-1-onto-> NN  /\  A. n  e.  A  B  e.  dom  vol )  ->  A. k  e.  NN  [_ ( `' f `  k )  /  n ]_ B  e.  dom  vol )
50 iunmbl 21152 . . . . . . . . 9  |-  ( A. k  e.  NN  [_ ( `' f `  k
)  /  n ]_ B  e.  dom  vol  ->  U_ k  e.  NN  [_ ( `' f `  k
)  /  n ]_ B  e.  dom  vol )
5149, 50syl 16 . . . . . . . 8  |-  ( ( f : A -1-1-onto-> NN  /\  A. n  e.  A  B  e.  dom  vol )  ->  U_ k  e.  NN  [_ ( `' f `  k )  /  n ]_ B  e.  dom  vol )
5245, 51eqeltrd 2539 . . . . . . 7  |-  ( ( f : A -1-1-onto-> NN  /\  A. n  e.  A  B  e.  dom  vol )  ->  U_ n  e.  A  B  e.  dom  vol )
5352ex 434 . . . . . 6  |-  ( f : A -1-1-onto-> NN  ->  ( A. n  e.  A  B  e.  dom  vol  ->  U_ n  e.  A  B  e.  dom  vol ) )
5453exlimiv 1689 . . . . 5  |-  ( E. f  f : A -1-1-onto-> NN  ->  ( A. n  e.  A  B  e.  dom  vol 
->  U_ n  e.  A  B  e.  dom  vol )
)
5510, 54sylbi 195 . . . 4  |-  ( A 
~~  NN  ->  ( A. n  e.  A  B  e.  dom  vol  ->  U_ n  e.  A  B  e.  dom  vol ) )
569, 55jaoi 379 . . 3  |-  ( ( A  ~<  NN  \/  A  ~~  NN )  -> 
( A. n  e.  A  B  e.  dom  vol 
->  U_ n  e.  A  B  e.  dom  vol )
)
571, 56sylbi 195 . 2  |-  ( A  ~<_  NN  ->  ( A. n  e.  A  B  e.  dom  vol  ->  U_ n  e.  A  B  e.  dom  vol ) )
5857imp 429 1  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  B  e.  dom  vol )  ->  U_ n  e.  A  B  e.  dom  vol )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758   A.wral 2795   E.wrex 2796   [_csb 3388   U_ciun 4271   class class class wbr 4392   `'ccnv 4939   dom cdm 4940   -1-1-onto->wf1o 5517   ` cfv 5518   omcom 6578    ~~ cen 7409    ~<_ cdom 7410    ~< csdm 7411   Fincfn 7412   NNcn 10425   volcvol 21065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-inf2 7950  ax-cc 8707  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462  ax-pre-sup 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-disj 4363  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-of 6422  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-1o 7022  df-2o 7023  df-oadd 7026  df-er 7203  df-map 7318  df-pm 7319  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-sup 7794  df-oi 7827  df-card 8212  df-cda 8440  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-div 10097  df-nn 10426  df-2 10483  df-3 10484  df-n0 10683  df-z 10750  df-uz 10965  df-q 11057  df-rp 11095  df-xadd 11193  df-ioo 11407  df-ico 11409  df-icc 11410  df-fz 11541  df-fzo 11652  df-fl 11745  df-seq 11910  df-exp 11969  df-hash 12207  df-cj 12692  df-re 12693  df-im 12694  df-sqr 12828  df-abs 12829  df-clim 13070  df-rlim 13071  df-sum 13268  df-xmet 17921  df-met 17922  df-ovol 21066  df-vol 21067
This theorem is referenced by:  opnmblALT  21201  mbfimaopnlem  21251  mbfaddlem  21256  mbfsup  21260  dmvlsiga  26708
  Copyright terms: Public domain W3C validator