MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunin2 Structured version   Unicode version

Theorem iunin2 4229
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 4218 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
iunin2  |-  U_ x  e.  A  ( B  i^i  C )  =  ( B  i^i  U_ x  e.  A  C )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem iunin2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.42v 2870 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  /\  y  e.  C )  <->  ( y  e.  B  /\  E. x  e.  A  y  e.  C ) )
2 elin 3534 . . . . 5  |-  ( y  e.  ( B  i^i  C )  <->  ( y  e.  B  /\  y  e.  C ) )
32rexbii 2735 . . . 4  |-  ( E. x  e.  A  y  e.  ( B  i^i  C )  <->  E. x  e.  A  ( y  e.  B  /\  y  e.  C
) )
4 eliun 4170 . . . . 5  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
54anbi2i 694 . . . 4  |-  ( ( y  e.  B  /\  y  e.  U_ x  e.  A  C )  <->  ( y  e.  B  /\  E. x  e.  A  y  e.  C ) )
61, 3, 53bitr4i 277 . . 3  |-  ( E. x  e.  A  y  e.  ( B  i^i  C )  <->  ( y  e.  B  /\  y  e. 
U_ x  e.  A  C ) )
7 eliun 4170 . . 3  |-  ( y  e.  U_ x  e.  A  ( B  i^i  C )  <->  E. x  e.  A  y  e.  ( B  i^i  C ) )
8 elin 3534 . . 3  |-  ( y  e.  ( B  i^i  U_ x  e.  A  C
)  <->  ( y  e.  B  /\  y  e. 
U_ x  e.  A  C ) )
96, 7, 83bitr4i 277 . 2  |-  ( y  e.  U_ x  e.  A  ( B  i^i  C )  <->  y  e.  ( B  i^i  U_ x  e.  A  C )
)
109eqriv 2435 1  |-  U_ x  e.  A  ( B  i^i  C )  =  ( B  i^i  U_ x  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2711    i^i cin 3322   U_ciun 4166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2715  df-rex 2716  df-v 2969  df-in 3330  df-iun 4168
This theorem is referenced by:  iunin1  4230  2iunin  4233  resiun1  5124  resiun2  5125  infssuni  7594  kmlem11  8321  cmpsublem  18982  cmpsub  18983  kgentopon  19091  metnrmlem3  20417  ovoliunlem1  20965  voliunlem1  21011  voliunlem2  21012  uniioombllem2  21043  uniioombllem4  21046  volsup2  21065  itg1addlem5  21158  itg1climres  21172  cvmscld  27131  cnambfre  28411  ftc1anclem6  28443  heiborlem3  28683
  Copyright terms: Public domain W3C validator