MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunin2 Structured version   Unicode version

Theorem iunin2 4363
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 4352 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
iunin2  |-  U_ x  e.  A  ( B  i^i  C )  =  ( B  i^i  U_ x  e.  A  C )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem iunin2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.42v 2980 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  /\  y  e.  C )  <->  ( y  e.  B  /\  E. x  e.  A  y  e.  C ) )
2 elin 3649 . . . . 5  |-  ( y  e.  ( B  i^i  C )  <->  ( y  e.  B  /\  y  e.  C ) )
32rexbii 2924 . . . 4  |-  ( E. x  e.  A  y  e.  ( B  i^i  C )  <->  E. x  e.  A  ( y  e.  B  /\  y  e.  C
) )
4 eliun 4304 . . . . 5  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
54anbi2i 698 . . . 4  |-  ( ( y  e.  B  /\  y  e.  U_ x  e.  A  C )  <->  ( y  e.  B  /\  E. x  e.  A  y  e.  C ) )
61, 3, 53bitr4i 280 . . 3  |-  ( E. x  e.  A  y  e.  ( B  i^i  C )  <->  ( y  e.  B  /\  y  e. 
U_ x  e.  A  C ) )
7 eliun 4304 . . 3  |-  ( y  e.  U_ x  e.  A  ( B  i^i  C )  <->  E. x  e.  A  y  e.  ( B  i^i  C ) )
8 elin 3649 . . 3  |-  ( y  e.  ( B  i^i  U_ x  e.  A  C
)  <->  ( y  e.  B  /\  y  e. 
U_ x  e.  A  C ) )
96, 7, 83bitr4i 280 . 2  |-  ( y  e.  U_ x  e.  A  ( B  i^i  C )  <->  y  e.  ( B  i^i  U_ x  e.  A  C )
)
109eqriv 2418 1  |-  U_ x  e.  A  ( B  i^i  C )  =  ( B  i^i  U_ x  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 370    = wceq 1437    e. wcel 1872   E.wrex 2772    i^i cin 3435   U_ciun 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401
This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ral 2776  df-rex 2777  df-v 3082  df-in 3443  df-iun 4301
This theorem is referenced by:  iunin1  4364  2iunin  4367  resiun1  5142  resiun2  5143  infssuni  7874  kmlem11  8597  cmpsublem  20412  cmpsub  20413  kgentopon  20551  metnrmlem3  21876  metnrmlem3OLD  21891  ovoliunlem1  22453  voliunlem1  22501  voliunlem2  22502  uniioombllem2  22538  uniioombllem2OLD  22539  uniioombllem4  22542  volsup2  22561  itg1addlem5  22656  itg1climres  22670  uniin2  28167  carsgclctunlem2  29159  cvmscld  30004  cnambfre  31953  ftc1anclem6  31986  heiborlem3  32109  carageniuncllem2  38251
  Copyright terms: Public domain W3C validator