MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunin1 Structured version   Unicode version

Theorem iunin1 4235
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 4223 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
iunin1  |-  U_ x  e.  A  ( C  i^i  B )  =  (
U_ x  e.  A  C  i^i  B )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem iunin1
StepHypRef Expression
1 iunin2 4234 . 2  |-  U_ x  e.  A  ( B  i^i  C )  =  ( B  i^i  U_ x  e.  A  C )
2 incom 3543 . . . 4  |-  ( C  i^i  B )  =  ( B  i^i  C
)
32a1i 11 . . 3  |-  ( x  e.  A  ->  ( C  i^i  B )  =  ( B  i^i  C
) )
43iuneq2i 4189 . 2  |-  U_ x  e.  A  ( C  i^i  B )  =  U_ x  e.  A  ( B  i^i  C )
5 incom 3543 . 2  |-  ( U_ x  e.  A  C  i^i  B )  =  ( B  i^i  U_ x  e.  A  C )
61, 4, 53eqtr4i 2473 1  |-  U_ x  e.  A  ( C  i^i  B )  =  (
U_ x  e.  A  C  i^i  B )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1369    e. wcel 1756    i^i cin 3327   U_ciun 4171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ral 2720  df-rex 2721  df-v 2974  df-in 3335  df-ss 3342  df-iun 4173
This theorem is referenced by:  2iunin  4238  tgrest  18763  metnrmlem3  20437  limciun  21369  disjunsn  25936  measinblem  26634  sstotbnd2  28673
  Copyright terms: Public domain W3C validator