MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunin1 Structured version   Unicode version

Theorem iunin1 4364
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 4352 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
iunin1  |-  U_ x  e.  A  ( C  i^i  B )  =  (
U_ x  e.  A  C  i^i  B )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem iunin1
StepHypRef Expression
1 iunin2 4363 . 2  |-  U_ x  e.  A  ( B  i^i  C )  =  ( B  i^i  U_ x  e.  A  C )
2 incom 3655 . . . 4  |-  ( C  i^i  B )  =  ( B  i^i  C
)
32a1i 11 . . 3  |-  ( x  e.  A  ->  ( C  i^i  B )  =  ( B  i^i  C
) )
43iuneq2i 4318 . 2  |-  U_ x  e.  A  ( C  i^i  B )  =  U_ x  e.  A  ( B  i^i  C )
5 incom 3655 . 2  |-  ( U_ x  e.  A  C  i^i  B )  =  ( B  i^i  U_ x  e.  A  C )
61, 4, 53eqtr4i 2461 1  |-  U_ x  e.  A  ( C  i^i  B )  =  (
U_ x  e.  A  C  i^i  B )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437    e. wcel 1872    i^i cin 3435   U_ciun 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401
This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ral 2776  df-rex 2777  df-v 3082  df-in 3443  df-ss 3450  df-iun 4301
This theorem is referenced by:  2iunin  4367  tgrest  20173  metnrmlem3  21876  metnrmlem3OLD  21891  limciun  22847  uniin1  28166  disjunsn  28206  measinblem  29050  sstotbnd2  32070  sge0iunmptlemre  38165
  Copyright terms: Public domain W3C validator