MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfo Structured version   Unicode version

Theorem iunfo 8971
Description: Existence of an onto function from a disjoint union to a union. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 18-Jan-2014.)
Hypothesis
Ref Expression
iunfo.1  |-  T  = 
U_ x  e.  A  ( { x }  X.  B )
Assertion
Ref Expression
iunfo  |-  ( 2nd  |`  T ) : T -onto-> U_ x  e.  A  B
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    T( x)

Proof of Theorem iunfo
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fo2nd 6828 . . . 4  |-  2nd : _V -onto-> _V
2 fof 5810 . . . 4  |-  ( 2nd
: _V -onto-> _V  ->  2nd
: _V --> _V )
3 ffn 5746 . . . 4  |-  ( 2nd
: _V --> _V  ->  2nd 
Fn  _V )
41, 2, 3mp2b 10 . . 3  |-  2nd  Fn  _V
5 ssv 3484 . . 3  |-  T  C_  _V
6 fnssres 5707 . . 3  |-  ( ( 2nd  Fn  _V  /\  T  C_  _V )  -> 
( 2nd  |`  T )  Fn  T )
74, 5, 6mp2an 676 . 2  |-  ( 2nd  |`  T )  Fn  T
8 df-ima 4866 . . 3  |-  ( 2nd " T )  =  ran  ( 2nd  |`  T )
9 iunfo.1 . . . . . . . . . . 11  |-  T  = 
U_ x  e.  A  ( { x }  X.  B )
109eleq2i 2499 . . . . . . . . . 10  |-  ( z  e.  T  <->  z  e.  U_ x  e.  A  ( { x }  X.  B ) )
11 eliun 4304 . . . . . . . . . 10  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  <->  E. x  e.  A  z  e.  ( { x }  X.  B ) )
1210, 11bitri 252 . . . . . . . . 9  |-  ( z  e.  T  <->  E. x  e.  A  z  e.  ( { x }  X.  B ) )
13 xp2nd 6838 . . . . . . . . . . 11  |-  ( z  e.  ( { x }  X.  B )  -> 
( 2nd `  z
)  e.  B )
14 eleq1 2495 . . . . . . . . . . 11  |-  ( ( 2nd `  z )  =  y  ->  (
( 2nd `  z
)  e.  B  <->  y  e.  B ) )
1513, 14syl5ib 222 . . . . . . . . . 10  |-  ( ( 2nd `  z )  =  y  ->  (
z  e.  ( { x }  X.  B
)  ->  y  e.  B ) )
1615reximdv 2896 . . . . . . . . 9  |-  ( ( 2nd `  z )  =  y  ->  ( E. x  e.  A  z  e.  ( {
x }  X.  B
)  ->  E. x  e.  A  y  e.  B ) )
1712, 16syl5bi 220 . . . . . . . 8  |-  ( ( 2nd `  z )  =  y  ->  (
z  e.  T  ->  E. x  e.  A  y  e.  B )
)
1817impcom 431 . . . . . . 7  |-  ( ( z  e.  T  /\  ( 2nd `  z )  =  y )  ->  E. x  e.  A  y  e.  B )
1918rexlimiva 2910 . . . . . 6  |-  ( E. z  e.  T  ( 2nd `  z )  =  y  ->  E. x  e.  A  y  e.  B )
20 nfiu1 4329 . . . . . . . . 9  |-  F/_ x U_ x  e.  A  ( { x }  X.  B )
219, 20nfcxfr 2578 . . . . . . . 8  |-  F/_ x T
22 nfv 1755 . . . . . . . 8  |-  F/ x
( 2nd `  z
)  =  y
2321, 22nfrex 2885 . . . . . . 7  |-  F/ x E. z  e.  T  ( 2nd `  z )  =  y
24 ssiun2 4342 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  ( { x }  X.  B )  C_  U_ x  e.  A  ( {
x }  X.  B
) )
2524adantr 466 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  X.  B )  C_  U_ x  e.  A  ( {
x }  X.  B
) )
26 simpr 462 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  y  e.  B )  ->  y  e.  B )
27 ssnid 4027 . . . . . . . . . . . . 13  |-  x  e. 
{ x }
28 opelxp 4883 . . . . . . . . . . . . 13  |-  ( <.
x ,  y >.  e.  ( { x }  X.  B )  <->  ( x  e.  { x }  /\  y  e.  B )
)
2927, 28mpbiran 926 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  ( { x }  X.  B )  <->  y  e.  B )
3026, 29sylibr 215 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. x ,  y >.  e.  ( { x }  X.  B ) )
3125, 30sseldd 3465 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. x ,  y >.  e.  U_ x  e.  A  ( { x }  X.  B ) )
3231, 9syl6eleqr 2518 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. x ,  y >.  e.  T )
33 vex 3083 . . . . . . . . . 10  |-  x  e. 
_V
34 vex 3083 . . . . . . . . . 10  |-  y  e. 
_V
3533, 34op2nd 6816 . . . . . . . . 9  |-  ( 2nd `  <. x ,  y
>. )  =  y
36 fveq2 5881 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( 2nd `  z
)  =  ( 2nd `  <. x ,  y
>. ) )
3736eqeq1d 2424 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>.  ->  ( ( 2nd `  z )  =  y  <-> 
( 2nd `  <. x ,  y >. )  =  y ) )
3837rspcev 3182 . . . . . . . . 9  |-  ( (
<. x ,  y >.  e.  T  /\  ( 2nd `  <. x ,  y
>. )  =  y
)  ->  E. z  e.  T  ( 2nd `  z )  =  y )
3932, 35, 38sylancl 666 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  B )  ->  E. z  e.  T  ( 2nd `  z )  =  y )
4039ex 435 . . . . . . 7  |-  ( x  e.  A  ->  (
y  e.  B  ->  E. z  e.  T  ( 2nd `  z )  =  y ) )
4123, 40rexlimi 2904 . . . . . 6  |-  ( E. x  e.  A  y  e.  B  ->  E. z  e.  T  ( 2nd `  z )  =  y )
4219, 41impbii 190 . . . . 5  |-  ( E. z  e.  T  ( 2nd `  z )  =  y  <->  E. x  e.  A  y  e.  B )
43 fvelimab 5937 . . . . . 6  |-  ( ( 2nd  Fn  _V  /\  T  C_  _V )  -> 
( y  e.  ( 2nd " T )  <->  E. z  e.  T  ( 2nd `  z )  =  y ) )
444, 5, 43mp2an 676 . . . . 5  |-  ( y  e.  ( 2nd " T
)  <->  E. z  e.  T  ( 2nd `  z )  =  y )
45 eliun 4304 . . . . 5  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
4642, 44, 453bitr4i 280 . . . 4  |-  ( y  e.  ( 2nd " T
)  <->  y  e.  U_ x  e.  A  B
)
4746eqriv 2418 . . 3  |-  ( 2nd " T )  =  U_ x  e.  A  B
488, 47eqtr3i 2453 . 2  |-  ran  ( 2nd  |`  T )  = 
U_ x  e.  A  B
49 df-fo 5607 . 2  |-  ( ( 2nd  |`  T ) : T -onto-> U_ x  e.  A  B 
<->  ( ( 2nd  |`  T )  Fn  T  /\  ran  ( 2nd  |`  T )  =  U_ x  e.  A  B ) )
507, 48, 49mpbir2an 928 1  |-  ( 2nd  |`  T ) : T -onto-> U_ x  e.  A  B
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   E.wrex 2772   _Vcvv 3080    C_ wss 3436   {csn 3998   <.cop 4004   U_ciun 4299    X. cxp 4851   ran crn 4854    |` cres 4855   "cima 4856    Fn wfn 5596   -->wf 5597   -onto->wfo 5599   ` cfv 5601   2ndc2nd 6806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fo 5607  df-fv 5609  df-2nd 6808
This theorem is referenced by:  iundomg  8973
  Copyright terms: Public domain W3C validator