MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfictbso Unicode version

Theorem iunfictbso 7951
Description: Countability of a countable union of finite sets with a strict (not globally well) order fulfilling the choice role. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
iunfictbso  |-  ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  ->  U. A  ~<_  om )

Proof of Theorem iunfictbso
Dummy variables  a 
b  c  d  e  f  g  h  i  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 7554 . . . . 5  |-  om  e.  _V
210dom 7196 . . . 4  |-  (/)  ~<_  om
3 breq1 4175 . . . 4  |-  ( U. A  =  (/)  ->  ( U. A  ~<_  om  <->  (/)  ~<_  om )
)
42, 3mpbiri 225 . . 3  |-  ( U. A  =  (/)  ->  U. A  ~<_  om )
54a1d 23 . 2  |-  ( U. A  =  (/)  ->  (
( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  ->  U. A  ~<_  om )
)
6 n0 3597 . . 3  |-  ( U. A  =/=  (/)  <->  E. a  a  e. 
U. A )
7 ne0i 3594 . . . . . . . . . 10  |-  ( a  e.  U. A  ->  U. A  =/=  (/) )
8 unieq 3984 . . . . . . . . . . . 12  |-  ( A  =  (/)  ->  U. A  =  U. (/) )
9 uni0 4002 . . . . . . . . . . . 12  |-  U. (/)  =  (/)
108, 9syl6eq 2452 . . . . . . . . . . 11  |-  ( A  =  (/)  ->  U. A  =  (/) )
1110necon3i 2606 . . . . . . . . . 10  |-  ( U. A  =/=  (/)  ->  A  =/=  (/) )
127, 11syl 16 . . . . . . . . 9  |-  ( a  e.  U. A  ->  A  =/=  (/) )
1312adantl 453 . . . . . . . 8  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  a  e.  U. A )  ->  A  =/=  (/) )
14 simpl1 960 . . . . . . . . 9  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  a  e.  U. A )  ->  A  ~<_  om )
15 reldom 7074 . . . . . . . . . 10  |-  Rel  ~<_
1615brrelexi 4877 . . . . . . . . 9  |-  ( A  ~<_  om  ->  A  e.  _V )
17 0sdomg 7195 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
1814, 16, 173syl 19 . . . . . . . 8  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  a  e.  U. A )  ->  ( (/)  ~<  A  <->  A  =/=  (/) ) )
1913, 18mpbird 224 . . . . . . 7  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  a  e.  U. A )  ->  (/)  ~<  A )
20 fodomr 7217 . . . . . . 7  |-  ( (
(/)  ~<  A  /\  A  ~<_  om )  ->  E. b 
b : om -onto-> A
)
2119, 14, 20syl2anc 643 . . . . . 6  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  a  e.  U. A )  ->  E. b  b : om -onto-> A )
22 omelon 7557 . . . . . . . . . . . 12  |-  om  e.  On
23 onenon 7792 . . . . . . . . . . . 12  |-  ( om  e.  On  ->  om  e.  dom  card )
2422, 23ax-mp 8 . . . . . . . . . . 11  |-  om  e.  dom  card
25 xpnum 7794 . . . . . . . . . . 11  |-  ( ( om  e.  dom  card  /\ 
om  e.  dom  card )  ->  ( om  X.  om )  e.  dom  card )
2624, 24, 25mp2an 654 . . . . . . . . . 10  |-  ( om 
X.  om )  e.  dom  card
27 simplrr 738 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  b : om -onto-> A )
28 fof 5612 . . . . . . . . . . . . . . . . . . 19  |-  ( b : om -onto-> A  -> 
b : om --> A )
2927, 28syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  b : om
--> A )
30 simprl 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  f  e.  om )
3129, 30ffvelrnd 5830 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  ( b `  f )  e.  A
)
3231adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  (
a  e.  U. A  /\  b : om -onto-> A
) )  /\  (
f  e.  om  /\  g  e.  om )
)  /\  g  e.  ( card `  ( b `  f ) ) )  ->  ( b `  f )  e.  A
)
33 elssuni 4003 . . . . . . . . . . . . . . . 16  |-  ( ( b `  f )  e.  A  ->  (
b `  f )  C_ 
U. A )
3432, 33syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  (
a  e.  U. A  /\  b : om -onto-> A
) )  /\  (
f  e.  om  /\  g  e.  om )
)  /\  g  e.  ( card `  ( b `  f ) ) )  ->  ( b `  f )  C_  U. A
)
3531, 33syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  ( b `  f )  C_  U. A
)
36 simpll3 998 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  B  Or  U. A )
37 soss 4481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( b `  f ) 
C_  U. A  ->  ( B  Or  U. A  ->  B  Or  ( b `  f ) ) )
3835, 36, 37sylc 58 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  B  Or  ( b `  f
) )
39 simpll2 997 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  A  C_  Fin )
4039, 31sseldd 3309 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  ( b `  f )  e.  Fin )
41 finnisoeu 7950 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  Or  ( b `
 f )  /\  ( b `  f
)  e.  Fin )  ->  E! h  h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) )
4238, 40, 41syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  E! h  h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) )
43 iotacl 5400 . . . . . . . . . . . . . . . . . . 19  |-  ( E! h  h  Isom  _E  ,  B  ( ( card `  ( b `  f
) ) ,  ( b `  f ) )  ->  ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  f
) ) ,  ( b `  f ) ) )  e.  {
h  |  h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) } )
4442, 43syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  f
) ) ,  ( b `  f ) ) )  e.  {
h  |  h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) } )
45 iotaex 5394 . . . . . . . . . . . . . . . . . . 19  |-  ( iota
h h  Isom  _E  ,  B  ( ( card `  ( b `  f
) ) ,  ( b `  f ) ) )  e.  _V
46 isoeq1 5998 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) )  ->  ( a  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) )  <-> 
( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) )  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) ) )
47 isoeq1 5998 . . . . . . . . . . . . . . . . . . . 20  |-  ( h  =  a  ->  (
h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) )  <-> 
a  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) )
4847cbvabv 2523 . . . . . . . . . . . . . . . . . . 19  |-  { h  |  h  Isom  _E  ,  B  ( ( card `  ( b `  f
) ) ,  ( b `  f ) ) }  =  {
a  |  a  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) }
4945, 46, 48elab2 3045 . . . . . . . . . . . . . . . . . 18  |-  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) )  e. 
{ h  |  h 
Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) }  <->  ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) )  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) )
5044, 49sylib 189 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  f
) ) ,  ( b `  f ) ) )  Isom  _E  ,  B  ( ( card `  ( b `  f
) ) ,  ( b `  f ) ) )
51 isof1o 6004 . . . . . . . . . . . . . . . . 17  |-  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) )  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) )  ->  ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  f
) ) ,  ( b `  f ) ) ) : (
card `  ( b `  f ) ) -1-1-onto-> ( b `
 f ) )
52 f1of 5633 . . . . . . . . . . . . . . . . 17  |-  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) ) : ( card `  (
b `  f )
)
-1-1-onto-> ( b `  f
)  ->  ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  f
) ) ,  ( b `  f ) ) ) : (
card `  ( b `  f ) ) --> ( b `  f ) )
5350, 51, 523syl 19 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  f
) ) ,  ( b `  f ) ) ) : (
card `  ( b `  f ) ) --> ( b `  f ) )
5453ffvelrnda 5829 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  (
a  e.  U. A  /\  b : om -onto-> A
) )  /\  (
f  e.  om  /\  g  e.  om )
)  /\  g  e.  ( card `  ( b `  f ) ) )  ->  ( ( iota
h h  Isom  _E  ,  B  ( ( card `  ( b `  f
) ) ,  ( b `  f ) ) ) `  g
)  e.  ( b `
 f ) )
5534, 54sseldd 3309 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  (
a  e.  U. A  /\  b : om -onto-> A
) )  /\  (
f  e.  om  /\  g  e.  om )
)  /\  g  e.  ( card `  ( b `  f ) ) )  ->  ( ( iota
h h  Isom  _E  ,  B  ( ( card `  ( b `  f
) ) ,  ( b `  f ) ) ) `  g
)  e.  U. A
)
56 simprl 733 . . . . . . . . . . . . . . 15  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  -> 
a  e.  U. A
)
5756ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  (
a  e.  U. A  /\  b : om -onto-> A
) )  /\  (
f  e.  om  /\  g  e.  om )
)  /\  -.  g  e.  ( card `  (
b `  f )
) )  ->  a  e.  U. A )
5855, 57ifclda 3726 . . . . . . . . . . . . 13  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( f  e.  om  /\  g  e.  om )
)  ->  if (
g  e.  ( card `  ( b `  f
) ) ,  ( ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a )  e. 
U. A )
5958ralrimivva 2758 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  ->  A. f  e.  om  A. g  e.  om  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a )  e. 
U. A )
60 eqid 2404 . . . . . . . . . . . . 13  |-  ( f  e.  om ,  g  e.  om  |->  if ( g  e.  ( card `  ( b `  f
) ) ,  ( ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) )  =  ( f  e. 
om ,  g  e. 
om  |->  if ( g  e.  ( card `  (
b `  f )
) ,  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) ) `  g ) ,  a ) )
6160fmpt2 6377 . . . . . . . . . . . 12  |-  ( A. f  e.  om  A. g  e.  om  if ( g  e.  ( card `  (
b `  f )
) ,  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) ) `  g ) ,  a )  e.  U. A  <->  ( f  e.  om , 
g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) : ( om  X.  om ) --> U. A )
6259, 61sylib 189 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  -> 
( f  e.  om ,  g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) : ( om  X.  om ) --> U. A )
63 eluni 3978 . . . . . . . . . . . . 13  |-  ( c  e.  U. A  <->  E. i
( c  e.  i  /\  i  e.  A
) )
64 simplrr 738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( c  e.  i  /\  i  e.  A
) )  ->  b : om -onto-> A )
65 simprr 734 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( c  e.  i  /\  i  e.  A
) )  ->  i  e.  A )
66 foelrn 5847 . . . . . . . . . . . . . . . . 17  |-  ( ( b : om -onto-> A  /\  i  e.  A
)  ->  E. j  e.  om  i  =  ( b `  j ) )
6764, 65, 66syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( c  e.  i  /\  i  e.  A
) )  ->  E. j  e.  om  i  =  ( b `  j ) )
68 simprrl 741 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  j  e.  om )
69 ordom 4813 . . . . . . . . . . . . . . . . . . . . . 22  |-  Ord  om
70 simpll2 997 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  A  C_  Fin )
71 simplrr 738 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  b : om -onto-> A )
7271, 28syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  b : om
--> A )
7372, 68ffvelrnd 5830 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  ( b `  j )  e.  A
)
7470, 73sseldd 3309 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  ( b `  j )  e.  Fin )
75 ficardom 7804 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( b `  j )  e.  Fin  ->  ( card `  ( b `  j ) )  e. 
om )
7674, 75syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  ( card `  ( b `  j
) )  e.  om )
77 ordelss 4557 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Ord  om  /\  ( card `  ( b `  j ) )  e. 
om )  ->  ( card `  ( b `  j ) )  C_  om )
7869, 76, 77sylancr 645 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  ( card `  ( b `  j
) )  C_  om )
79 elssuni 4003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( b `  j )  e.  A  ->  (
b `  j )  C_ 
U. A )
8073, 79syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  ( b `  j )  C_  U. A
)
81 simpll3 998 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  B  Or  U. A )
82 soss 4481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( b `  j ) 
C_  U. A  ->  ( B  Or  U. A  ->  B  Or  ( b `  j ) ) )
8380, 81, 82sylc 58 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  B  Or  ( b `  j
) )
84 finnisoeu 7950 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  Or  ( b `
 j )  /\  ( b `  j
)  e.  Fin )  ->  E! h  h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) )
8583, 74, 84syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  E! h  h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) )
86 iotacl 5400 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( E! h  h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) )  ->  ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) )  e.  {
h  |  h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) } )
8785, 86syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) )  e.  {
h  |  h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) } )
88 iotaex 5394 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( iota
h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) )  e.  _V
89 isoeq1 5998 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( a  =  ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) )  ->  ( a  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) )  <-> 
( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) )  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) )
90 isoeq1 5998 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( h  =  a  ->  (
h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) )  <-> 
a  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) )
9190cbvabv 2523 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  { h  |  h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) }  =  {
a  |  a  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) }
9288, 89, 91elab2 3045 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) )  e. 
{ h  |  h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) }  <->  ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) )  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) )
9387, 92sylib 189 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) )  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) )
94 isof1o 6004 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) )  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) )  ->  ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) : (
card `  ( b `  j ) ) -1-1-onto-> ( b `
 j ) )
9593, 94syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) : (
card `  ( b `  j ) ) -1-1-onto-> ( b `
 j ) )
96 f1ocnv 5646 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) : ( card `  (
b `  j )
)
-1-1-onto-> ( b `  j
)  ->  `' ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) : ( b `  j ) -1-1-onto-> (
card `  ( b `  j ) ) )
97 f1of 5633 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( `' ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) : ( b `
 j ) -1-1-onto-> ( card `  ( b `  j
) )  ->  `' ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) : ( b `  j
) --> ( card `  (
b `  j )
) )
9895, 96, 973syl 19 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  `' ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) : ( b `  j ) --> ( card `  (
b `  j )
) )
99 simprll 739 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  c  e.  i )
100 simprrr 742 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  i  =  ( b `  j
) )
10199, 100eleqtrd 2480 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  c  e.  ( b `  j
) )
10298, 101ffvelrnd 5830 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  ( `' ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  c )  e.  (
card `  ( b `  j ) ) )
10378, 102sseldd 3309 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  ( `' ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  c )  e.  om )
104 fveq2 5687 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  =  j  ->  (
b `  f )  =  ( b `  j ) )
105104fveq2d 5691 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  =  j  ->  ( card `  ( b `  f ) )  =  ( card `  (
b `  j )
) )
106105eleq2d 2471 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  =  j  ->  (
g  e.  ( card `  ( b `  f
) )  <->  g  e.  ( card `  ( b `  j ) ) ) )
107 isoeq4 6001 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
card `  ( b `  f ) )  =  ( card `  (
b `  j )
)  ->  ( h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) )  <-> 
h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 f ) ) ) )
108105, 107syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f  =  j  ->  (
h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) )  <-> 
h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 f ) ) ) )
109 isoeq5 6002 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( b `  f )  =  ( b `  j )  ->  (
h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 f ) )  <-> 
h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) )
110104, 109syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f  =  j  ->  (
h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 f ) )  <-> 
h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) )
111108, 110bitrd 245 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  =  j  ->  (
h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) )  <-> 
h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) )
112111iotabidv 5398 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  =  j  ->  ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  f
) ) ,  ( b `  f ) ) )  =  ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) )
113112fveq1d 5689 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  =  j  ->  (
( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) ) `  g )  =  ( ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  g ) )
114 eqidd 2405 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  =  j  ->  a  =  a )
115106, 113, 114ifbieq12d 3721 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  =  j  ->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a )  =  if ( g  e.  ( card `  (
b `  j )
) ,  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  g ) ,  a ) )
116 eleq1 2464 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( g  =  ( `' ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  c )  ->  (
g  e.  ( card `  ( b `  j
) )  <->  ( `' ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  c )  e.  (
card `  ( b `  j ) ) ) )
117 fveq2 5687 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( g  =  ( `' ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  c )  ->  (
( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  g )  =  ( ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  ( `' ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c ) ) )
118 eqidd 2405 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( g  =  ( `' ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  c )  ->  a  =  a )
119116, 117, 118ifbieq12d 3721 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( g  =  ( `' ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  c )  ->  if ( g  e.  (
card `  ( b `  j ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  g ) ,  a )  =  if ( ( `' ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c )  e.  ( card `  (
b `  j )
) ,  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  ( `' ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c ) ) ,  a ) )
120 fvex 5701 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  ( `' ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c ) )  e.  _V
121 vex 2919 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  a  e. 
_V
122120, 121ifex 3757 . . . . . . . . . . . . . . . . . . . . . . 23  |-  if ( ( `' ( iota
h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) `  c
)  e.  ( card `  ( b `  j
) ) ,  ( ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  ( `' ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c ) ) ,  a )  e.  _V
123115, 119, 60, 122ovmpt2 6168 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( j  e.  om  /\  ( `' ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c )  e.  om )  -> 
( j ( f  e.  om ,  g  e.  om  |->  if ( g  e.  ( card `  ( b `  f
) ) ,  ( ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) ( `' ( iota
h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) `  c
) )  =  if ( ( `' ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  c )  e.  (
card `  ( b `  j ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  ( `' ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c ) ) ,  a ) )
12468, 103, 123syl2anc 643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  ( j
( f  e.  om ,  g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) ( `' ( iota
h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) `  c
) )  =  if ( ( `' ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  c )  e.  (
card `  ( b `  j ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  ( `' ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c ) ) ,  a ) )
125 iftrue 3705 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( `' ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c )  e.  ( card `  (
b `  j )
)  ->  if (
( `' ( iota
h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) `  c
)  e.  ( card `  ( b `  j
) ) ,  ( ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  ( `' ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c ) ) ,  a )  =  ( ( iota
h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) `  ( `' ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c ) ) )
126102, 125syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  if (
( `' ( iota
h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) `  c
)  e.  ( card `  ( b `  j
) ) ,  ( ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  ( `' ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c ) ) ,  a )  =  ( ( iota
h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) `  ( `' ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c ) ) )
127 f1ocnvfv2 5974 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) : ( card `  ( b `  j
) ) -1-1-onto-> ( b `  j
)  /\  c  e.  ( b `  j
) )  ->  (
( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  j ) ) ,  ( b `  j
) ) ) `  ( `' ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c ) )  =  c )
12895, 101, 127syl2anc 643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  ( ( iota h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) `  ( `' ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c ) )  =  c )
129124, 126, 1283eqtrrd 2441 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  c  =  ( j ( f  e.  om ,  g  e.  om  |->  if ( g  e.  ( card `  ( b `  f
) ) ,  ( ( iota h h 
Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) ( `' ( iota
h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) `  c
) ) )
130 rspceov 6075 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  e.  om  /\  ( `' ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  j )
) ,  ( b `
 j ) ) ) `  c )  e.  om  /\  c  =  ( j ( f  e.  om , 
g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) ( `' ( iota
h h  Isom  _E  ,  B  ( ( card `  ( b `  j
) ) ,  ( b `  j ) ) ) `  c
) ) )  ->  E. d  e.  om  E. e  e.  om  c  =  ( d ( f  e.  om , 
g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) e ) )
13168, 103, 129, 130syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( ( c  e.  i  /\  i  e.  A )  /\  (
j  e.  om  /\  i  =  ( b `  j ) ) ) )  ->  E. d  e.  om  E. e  e. 
om  c  =  ( d ( f  e. 
om ,  g  e. 
om  |->  if ( g  e.  ( card `  (
b `  f )
) ,  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) ) `  g ) ,  a ) ) e ) )
132131expr 599 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( c  e.  i  /\  i  e.  A
) )  ->  (
( j  e.  om  /\  i  =  ( b `
 j ) )  ->  E. d  e.  om  E. e  e.  om  c  =  ( d ( f  e.  om , 
g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) e ) ) )
133132exp3a 426 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( c  e.  i  /\  i  e.  A
) )  ->  (
j  e.  om  ->  ( i  =  ( b `
 j )  ->  E. d  e.  om  E. e  e.  om  c  =  ( d ( f  e.  om , 
g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) e ) ) ) )
134133rexlimdv 2789 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( c  e.  i  /\  i  e.  A
) )  ->  ( E. j  e.  om  i  =  ( b `  j )  ->  E. d  e.  om  E. e  e. 
om  c  =  ( d ( f  e. 
om ,  g  e. 
om  |->  if ( g  e.  ( card `  (
b `  f )
) ,  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) ) `  g ) ,  a ) ) e ) ) )
13567, 134mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  /\  ( c  e.  i  /\  i  e.  A
) )  ->  E. d  e.  om  E. e  e. 
om  c  =  ( d ( f  e. 
om ,  g  e. 
om  |->  if ( g  e.  ( card `  (
b `  f )
) ,  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) ) `  g ) ,  a ) ) e ) )
136135ex 424 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  -> 
( ( c  e.  i  /\  i  e.  A )  ->  E. d  e.  om  E. e  e. 
om  c  =  ( d ( f  e. 
om ,  g  e. 
om  |->  if ( g  e.  ( card `  (
b `  f )
) ,  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) ) `  g ) ,  a ) ) e ) ) )
137136exlimdv 1643 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  -> 
( E. i ( c  e.  i  /\  i  e.  A )  ->  E. d  e.  om  E. e  e.  om  c  =  ( d ( f  e.  om , 
g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) e ) ) )
13863, 137syl5bi 209 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  -> 
( c  e.  U. A  ->  E. d  e.  om  E. e  e.  om  c  =  ( d ( f  e.  om , 
g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) e ) ) )
139138ralrimiv 2748 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  ->  A. c  e.  U. A E. d  e.  om  E. e  e.  om  c  =  ( d ( f  e.  om , 
g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) e ) )
140 foov 6179 . . . . . . . . . . 11  |-  ( ( f  e.  om , 
g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) : ( om  X.  om ) -onto-> U. A  <->  ( (
f  e.  om , 
g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) : ( om  X.  om ) --> U. A  /\  A. c  e.  U. A E. d  e.  om  E. e  e.  om  c  =  ( d ( f  e. 
om ,  g  e. 
om  |->  if ( g  e.  ( card `  (
b `  f )
) ,  ( ( iota h h  Isom  _E  ,  B  ( (
card `  ( b `  f ) ) ,  ( b `  f
) ) ) `  g ) ,  a ) ) e ) ) )
14162, 139, 140sylanbrc 646 . . . . . . . . . 10  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  -> 
( f  e.  om ,  g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) : ( om  X.  om ) -onto-> U. A )
142 fodomnum 7894 . . . . . . . . . 10  |-  ( ( om  X.  om )  e.  dom  card  ->  ( ( f  e.  om , 
g  e.  om  |->  if ( g  e.  (
card `  ( b `  f ) ) ,  ( ( iota h h  Isom  _E  ,  B  ( ( card `  (
b `  f )
) ,  ( b `
 f ) ) ) `  g ) ,  a ) ) : ( om  X.  om ) -onto-> U. A  ->  U. A  ~<_  ( om  X.  om )
) )
14326, 141, 142mpsyl 61 . . . . . . . . 9  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  ->  U. A  ~<_  ( om  X.  om ) )
144 xpomen 7853 . . . . . . . . 9  |-  ( om 
X.  om )  ~~  om
145 domentr 7125 . . . . . . . . 9  |-  ( ( U. A  ~<_  ( om 
X.  om )  /\  ( om  X.  om )  ~~  om )  ->  U. A  ~<_  om )
146143, 144, 145sylancl 644 . . . . . . . 8  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  ( a  e.  U. A  /\  b : om -onto-> A ) )  ->  U. A  ~<_  om )
147146expr 599 . . . . . . 7  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  a  e.  U. A )  ->  ( b : om -onto-> A  ->  U. A  ~<_  om ) )
148147exlimdv 1643 . . . . . 6  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  a  e.  U. A )  ->  ( E. b 
b : om -onto-> A  ->  U. A  ~<_  om )
)
14921, 148mpd 15 . . . . 5  |-  ( ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  /\  a  e.  U. A )  ->  U. A  ~<_  om )
150149expcom 425 . . . 4  |-  ( a  e.  U. A  -> 
( ( A  ~<_  om 
/\  A  C_  Fin  /\  B  Or  U. A
)  ->  U. A  ~<_  om ) )
151150exlimiv 1641 . . 3  |-  ( E. a  a  e.  U. A  ->  ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  ->  U. A  ~<_  om ) )
1526, 151sylbi 188 . 2  |-  ( U. A  =/=  (/)  ->  ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  ->  U. A  ~<_  om ) )
1535, 152pm2.61ine 2643 1  |-  ( ( A  ~<_  om  /\  A  C_  Fin  /\  B  Or  U. A )  ->  U. A  ~<_  om )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721   E!weu 2254   {cab 2390    =/= wne 2567   A.wral 2666   E.wrex 2667   _Vcvv 2916    C_ wss 3280   (/)c0 3588   ifcif 3699   U.cuni 3975   class class class wbr 4172    _E cep 4452    Or wor 4462   Ord word 4540   Oncon0 4541   omcom 4804    X. cxp 4835   `'ccnv 4836   dom cdm 4837   iotacio 5375   -->wf 5409   -onto->wfo 5411   -1-1-onto->wf1o 5412   ` cfv 5413    Isom wiso 5414  (class class class)co 6040    e. cmpt2 6042    ~~ cen 7065    ~<_ cdom 7066    ~< csdm 7067   Fincfn 7068   cardccrd 7778
This theorem is referenced by:  aannenlem3  20200
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-oi 7435  df-card 7782  df-acn 7785
  Copyright terms: Public domain W3C validator