MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunexg Structured version   Unicode version

Theorem iunexg 6760
Description: The existence of an indexed union.  x is normally a free-variable parameter in  B. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
iunexg  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  W )  ->  U_ x  e.  A  B  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)    W( x)

Proof of Theorem iunexg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 4357 . . 3  |-  ( A. x  e.  A  B  e.  W  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
21adantl 466 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  W )  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
3 abrexexg 6759 . . . 4  |-  ( A  e.  V  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
4 uniexg 6581 . . . 4  |-  ( { y  |  E. x  e.  A  y  =  B }  e.  _V  ->  U. { y  |  E. x  e.  A  y  =  B }  e.  _V )
53, 4syl 16 . . 3  |-  ( A  e.  V  ->  U. {
y  |  E. x  e.  A  y  =  B }  e.  _V )
65adantr 465 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  W )  ->  U. {
y  |  E. x  e.  A  y  =  B }  e.  _V )
72, 6eqeltrd 2555 1  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  W )  ->  U_ x  e.  A  B  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815   _Vcvv 3113   U.cuni 4245   U_ciun 4325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596
This theorem is referenced by:  abrexex2g  6761  opabex3d  6762  opabex3  6763  iunex  6764  xpexgALT  6777  mpt2exxg  6857  ixpexg  7493  ixpssmapg  7499  iundom  8917  iunctb  8949  cshwsex  14443  imasplusg  14772  imasmulr  14773  imasvsca  14775  imasip  14776  gsum2d2  16805  gsumcom2  16806  dprd2da  16893  ptcls  19880  ptcmplem2  20316  eulerpartlemgs2  27987  trpredtr  28918  trpredmintr  28919  trpredrec  28926  mpt2exxg2  32023  bnj535  33045  bnj546  33051  bnj893  33083  bnj1136  33150  bnj1413  33188
  Copyright terms: Public domain W3C validator