Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneq12df Unicode version

Theorem iuneq12df 23961
Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016.)
Hypotheses
Ref Expression
iuneq12df.1  |-  F/ x ph
iuneq12df.2  |-  F/_ x A
iuneq12df.3  |-  F/_ x B
iuneq12df.4  |-  ( ph  ->  A  =  B )
iuneq12df.5  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
iuneq12df  |-  ( ph  ->  U_ x  e.  A  C  =  U_ x  e.  B  D )

Proof of Theorem iuneq12df
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iuneq12df.1 . . . 4  |-  F/ x ph
2 iuneq12df.2 . . . 4  |-  F/_ x A
3 iuneq12df.3 . . . 4  |-  F/_ x B
4 iuneq12df.4 . . . 4  |-  ( ph  ->  A  =  B )
5 iuneq12df.5 . . . . 5  |-  ( ph  ->  C  =  D )
65eleq2d 2471 . . . 4  |-  ( ph  ->  ( y  e.  C  <->  y  e.  D ) )
71, 2, 3, 4, 6rexeqbid 23917 . . 3  |-  ( ph  ->  ( E. x  e.  A  y  e.  C  <->  E. x  e.  B  y  e.  D ) )
87alrimiv 1638 . 2  |-  ( ph  ->  A. y ( E. x  e.  A  y  e.  C  <->  E. x  e.  B  y  e.  D ) )
9 abbi 2514 . . 3  |-  ( A. y ( E. x  e.  A  y  e.  C 
<->  E. x  e.  B  y  e.  D )  <->  { y  |  E. x  e.  A  y  e.  C }  =  {
y  |  E. x  e.  B  y  e.  D } )
10 df-iun 4055 . . . 4  |-  U_ x  e.  A  C  =  { y  |  E. x  e.  A  y  e.  C }
11 df-iun 4055 . . . 4  |-  U_ x  e.  B  D  =  { y  |  E. x  e.  B  y  e.  D }
1210, 11eqeq12i 2417 . . 3  |-  ( U_ x  e.  A  C  =  U_ x  e.  B  D 
<->  { y  |  E. x  e.  A  y  e.  C }  =  {
y  |  E. x  e.  B  y  e.  D } )
139, 12bitr4i 244 . 2  |-  ( A. y ( E. x  e.  A  y  e.  C 
<->  E. x  e.  B  y  e.  D )  <->  U_ x  e.  A  C  =  U_ x  e.  B  D )
148, 13sylib 189 1  |-  ( ph  ->  U_ x  e.  A  C  =  U_ x  e.  B  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1546   F/wnf 1550    = wceq 1649    e. wcel 1721   {cab 2390   F/_wnfc 2527   E.wrex 2667   U_ciun 4053
This theorem is referenced by:  iundisjf  23982  measvuni  24521
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-rex 2672  df-iun 4055
  Copyright terms: Public domain W3C validator