MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundom Structured version   Unicode version

Theorem iundom 8949
Description: An upper bound for the cardinality of an indexed union.  C depends on  x and should be thought of as  C ( x ). (Contributed by NM, 26-Mar-2006.)
Assertion
Ref Expression
iundom  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  C  ~<_  ( A  X.  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    C( x)    V( x)

Proof of Theorem iundom
StepHypRef Expression
1 eqid 2402 . 2  |-  U_ x  e.  A  ( {
x }  X.  C
)  =  U_ x  e.  A  ( {
x }  X.  C
)
2 simpl 455 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  A  e.  V )
3 ovex 6306 . . . . . 6  |-  ( B  ^m  C )  e. 
_V
43rgenw 2765 . . . . 5  |-  A. x  e.  A  ( B  ^m  C )  e.  _V
5 iunexg 6760 . . . . 5  |-  ( ( A  e.  V  /\  A. x  e.  A  ( B  ^m  C )  e.  _V )  ->  U_ x  e.  A  ( B  ^m  C )  e.  _V )
62, 4, 5sylancl 660 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  ( B  ^m  C )  e.  _V )
7 numth3 8882 . . . 4  |-  ( U_ x  e.  A  ( B  ^m  C )  e. 
_V  ->  U_ x  e.  A  ( B  ^m  C )  e.  dom  card )
86, 7syl 17 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  ( B  ^m  C )  e.  dom  card )
9 numacn 8462 . . 3  |-  ( A  e.  V  ->  ( U_ x  e.  A  ( B  ^m  C )  e.  dom  card  ->  U_ x  e.  A  ( B  ^m  C )  e. AC  A ) )
102, 8, 9sylc 59 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  ( B  ^m  C )  e. AC  A )
11 simpr 459 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  A. x  e.  A  C  ~<_  B )
12 reldom 7560 . . . . . 6  |-  Rel  ~<_
1312brrelexi 4864 . . . . 5  |-  ( C  ~<_  B  ->  C  e.  _V )
1413ralimi 2797 . . . 4  |-  ( A. x  e.  A  C  ~<_  B  ->  A. x  e.  A  C  e.  _V )
15 iunexg 6760 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  C  e.  _V )  ->  U_ x  e.  A  C  e.  _V )
1614, 15sylan2 472 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  C  e.  _V )
171, 10, 11iundom2g 8947 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  ( {
x }  X.  C
)  ~<_  ( A  X.  B ) )
1812brrelex2i 4865 . . . 4  |-  ( U_ x  e.  A  ( { x }  X.  C )  ~<_  ( A  X.  B )  -> 
( A  X.  B
)  e.  _V )
19 numth3 8882 . . . 4  |-  ( ( A  X.  B )  e.  _V  ->  ( A  X.  B )  e. 
dom  card )
2017, 18, 193syl 18 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  ( A  X.  B )  e. 
dom  card )
21 numacn 8462 . . 3  |-  ( U_ x  e.  A  C  e.  _V  ->  ( ( A  X.  B )  e. 
dom  card  ->  ( A  X.  B )  e. AC  U_ x  e.  A  C )
)
2216, 20, 21sylc 59 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  ( A  X.  B )  e. AC  U_ x  e.  A  C
)
231, 10, 11, 22iundomg 8948 1  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  C  ~<_  ( A  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    e. wcel 1842   A.wral 2754   _Vcvv 3059   {csn 3972   U_ciun 4271   class class class wbr 4395    X. cxp 4821   dom cdm 4823  (class class class)co 6278    ^m cmap 7457    ~<_ cdom 7552   cardccrd 8348  AC wacn 8351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-ac2 8875
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-card 8352  df-acn 8355  df-ac 8529
This theorem is referenced by:  unidom  8950  alephreg  8989  inar1  9183
  Copyright terms: Public domain W3C validator