MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundisj Structured version   Unicode version

Theorem iundisj 21041
Description: Rewrite a countable union as a disjoint union. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypothesis
Ref Expression
iundisj.1  |-  ( n  =  k  ->  A  =  B )
Assertion
Ref Expression
iundisj  |-  U_ n  e.  NN  A  =  U_ n  e.  NN  ( A  \  U_ k  e.  ( 1..^ n ) B )
Distinct variable groups:    k, n    A, k    B, n
Allowed substitution hints:    A( n)    B( k)

Proof of Theorem iundisj
Dummy variables  x  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3449 . . . . . . . . . 10  |-  { n  e.  NN  |  x  e.  A }  C_  NN
2 nnuz 10908 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
31, 2sseqtri 3400 . . . . . . . . 9  |-  { n  e.  NN  |  x  e.  A }  C_  ( ZZ>=
`  1 )
4 rabn0 3669 . . . . . . . . . 10  |-  ( { n  e.  NN  |  x  e.  A }  =/=  (/)  <->  E. n  e.  NN  x  e.  A )
54biimpri 206 . . . . . . . . 9  |-  ( E. n  e.  NN  x  e.  A  ->  { n  e.  NN  |  x  e.  A }  =/=  (/) )
6 infmssuzcl 10950 . . . . . . . . 9  |-  ( ( { n  e.  NN  |  x  e.  A }  C_  ( ZZ>= `  1
)  /\  { n  e.  NN  |  x  e.  A }  =/=  (/) )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  x  e.  A } )
73, 5, 6sylancr 663 . . . . . . . 8  |-  ( E. n  e.  NN  x  e.  A  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  {
n  e.  NN  |  x  e.  A }
)
8 nfrab1 2913 . . . . . . . . . 10  |-  F/_ n { n  e.  NN  |  x  e.  A }
9 nfcv 2589 . . . . . . . . . 10  |-  F/_ n RR
10 nfcv 2589 . . . . . . . . . 10  |-  F/_ n `'  <
118, 9, 10nfsup 7713 . . . . . . . . 9  |-  F/_ n sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )
12 nfcv 2589 . . . . . . . . 9  |-  F/_ n NN
1311nfcsb1 3315 . . . . . . . . . 10  |-  F/_ n [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A
1413nfcri 2582 . . . . . . . . 9  |-  F/ n  x  e.  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A
15 csbeq1a 3309 . . . . . . . . . 10  |-  ( n  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  A  =  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A )
1615eleq2d 2510 . . . . . . . . 9  |-  ( n  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( x  e.  A  <->  x  e.  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A ) )
1711, 12, 14, 16elrabf 3127 . . . . . . . 8  |-  ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  x  e.  A } 
<->  ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN  /\  x  e.  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A
) )
187, 17sylib 196 . . . . . . 7  |-  ( E. n  e.  NN  x  e.  A  ->  ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN  /\  x  e. 
[_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A ) )
1918simpld 459 . . . . . 6  |-  ( E. n  e.  NN  x  e.  A  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN )
2018simprd 463 . . . . . . 7  |-  ( E. n  e.  NN  x  e.  A  ->  x  e. 
[_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A )
2119nnred 10349 . . . . . . . . 9  |-  ( E. n  e.  NN  x  e.  A  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  RR )
2221ltnrd 9520 . . . . . . . 8  |-  ( E. n  e.  NN  x  e.  A  ->  -.  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
23 eliun 4187 . . . . . . . . 9  |-  ( x  e.  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B  <->  E. k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) x  e.  B )
2421ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  RR )
25 elfzouz 11569 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )  -> 
k  e.  ( ZZ>= ` 
1 ) )
2625, 2syl6eleqr 2534 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )  -> 
k  e.  NN )
2726ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  e.  NN )
2827nnred 10349 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  e.  RR )
29 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  x  e.  B )
30 iundisj.1 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  A  =  B )
3130eleq2d 2510 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
x  e.  A  <->  x  e.  B ) )
3231elrab 3129 . . . . . . . . . . . . . 14  |-  ( k  e.  { n  e.  NN  |  x  e.  A }  <->  ( k  e.  NN  /\  x  e.  B ) )
3327, 29, 32sylanbrc 664 . . . . . . . . . . . . 13  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  e.  { n  e.  NN  |  x  e.  A } )
34 infmssuzle 10949 . . . . . . . . . . . . 13  |-  ( ( { n  e.  NN  |  x  e.  A }  C_  ( ZZ>= `  1
)  /\  k  e.  { n  e.  NN  |  x  e.  A }
)  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <_  k
)
353, 33, 34sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <_  k
)
36 elfzolt2 11573 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )  -> 
k  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
3736ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
3824, 28, 24, 35, 37lelttrd 9541 . . . . . . . . . . 11  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
3938ex 434 . . . . . . . . . 10  |-  ( ( E. n  e.  NN  x  e.  A  /\  k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  ->  ( x  e.  B  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
4039rexlimdva 2853 . . . . . . . . 9  |-  ( E. n  e.  NN  x  e.  A  ->  ( E. k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) x  e.  B  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
4123, 40syl5bi 217 . . . . . . . 8  |-  ( E. n  e.  NN  x  e.  A  ->  ( x  e.  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
4222, 41mtod 177 . . . . . . 7  |-  ( E. n  e.  NN  x  e.  A  ->  -.  x  e.  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B )
4320, 42eldifd 3351 . . . . . 6  |-  ( E. n  e.  NN  x  e.  A  ->  x  e.  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) )
44 csbeq1 3303 . . . . . . . . 9  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  [_ m  /  n ]_ A  =  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A )
45 oveq2 6111 . . . . . . . . . 10  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( 1..^ m )  =  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
4645iuneq1d 4207 . . . . . . . . 9  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  U_ k  e.  ( 1..^ m ) B  =  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B )
4744, 46difeq12d 3487 . . . . . . . 8  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( [_ m  /  n ]_ A  \  U_ k  e.  (
1..^ m ) B )  =  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) )
4847eleq2d 2510 . . . . . . 7  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( x  e.  ( [_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B )  <-> 
x  e.  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) ) )
4948rspcev 3085 . . . . . 6  |-  ( ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN  /\  x  e.  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) )  ->  E. m  e.  NN  x  e.  (
[_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) )
5019, 43, 49syl2anc 661 . . . . 5  |-  ( E. n  e.  NN  x  e.  A  ->  E. m  e.  NN  x  e.  (
[_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) )
51 nfv 1673 . . . . . 6  |-  F/ m  x  e.  ( A  \ 
U_ k  e.  ( 1..^ n ) B )
52 nfcsb1v 3316 . . . . . . . 8  |-  F/_ n [_ m  /  n ]_ A
53 nfcv 2589 . . . . . . . 8  |-  F/_ n U_ k  e.  (
1..^ m ) B
5452, 53nfdif 3489 . . . . . . 7  |-  F/_ n
( [_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B )
5554nfcri 2582 . . . . . 6  |-  F/ n  x  e.  ( [_ m  /  n ]_ A  \ 
U_ k  e.  ( 1..^ m ) B )
56 csbeq1a 3309 . . . . . . . 8  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
57 oveq2 6111 . . . . . . . . 9  |-  ( n  =  m  ->  (
1..^ n )  =  ( 1..^ m ) )
5857iuneq1d 4207 . . . . . . . 8  |-  ( n  =  m  ->  U_ k  e.  ( 1..^ n ) B  =  U_ k  e.  ( 1..^ m ) B )
5956, 58difeq12d 3487 . . . . . . 7  |-  ( n  =  m  ->  ( A  \  U_ k  e.  ( 1..^ n ) B )  =  (
[_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) )
6059eleq2d 2510 . . . . . 6  |-  ( n  =  m  ->  (
x  e.  ( A 
\  U_ k  e.  ( 1..^ n ) B )  <->  x  e.  ( [_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) ) )
6151, 55, 60cbvrex 2956 . . . . 5  |-  ( E. n  e.  NN  x  e.  ( A  \  U_ k  e.  ( 1..^ n ) B )  <->  E. m  e.  NN  x  e.  ( [_ m  /  n ]_ A  \ 
U_ k  e.  ( 1..^ m ) B ) )
6250, 61sylibr 212 . . . 4  |-  ( E. n  e.  NN  x  e.  A  ->  E. n  e.  NN  x  e.  ( A  \  U_ k  e.  ( 1..^ n ) B ) )
63 eldifi 3490 . . . . 5  |-  ( x  e.  ( A  \  U_ k  e.  (
1..^ n ) B )  ->  x  e.  A )
6463reximi 2835 . . . 4  |-  ( E. n  e.  NN  x  e.  ( A  \  U_ k  e.  ( 1..^ n ) B )  ->  E. n  e.  NN  x  e.  A )
6562, 64impbii 188 . . 3  |-  ( E. n  e.  NN  x  e.  A  <->  E. n  e.  NN  x  e.  ( A  \ 
U_ k  e.  ( 1..^ n ) B ) )
66 eliun 4187 . . 3  |-  ( x  e.  U_ n  e.  NN  A  <->  E. n  e.  NN  x  e.  A
)
67 eliun 4187 . . 3  |-  ( x  e.  U_ n  e.  NN  ( A  \  U_ k  e.  (
1..^ n ) B )  <->  E. n  e.  NN  x  e.  ( A  \ 
U_ k  e.  ( 1..^ n ) B ) )
6865, 66, 673bitr4i 277 . 2  |-  ( x  e.  U_ n  e.  NN  A  <->  x  e.  U_ n  e.  NN  ( A  \  U_ k  e.  ( 1..^ n ) B ) )
6968eqriv 2440 1  |-  U_ n  e.  NN  A  =  U_ n  e.  NN  ( A  \  U_ k  e.  ( 1..^ n ) B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2618   E.wrex 2728   {crab 2731   [_csb 3300    \ cdif 3337    C_ wss 3340   (/)c0 3649   U_ciun 4183   class class class wbr 4304   `'ccnv 4851   ` cfv 5430  (class class class)co 6103   supcsup 7702   RRcr 9293   1c1 9295    < clt 9430    <_ cle 9431   NNcn 10334   ZZ>=cuz 10873  ..^cfzo 11560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-sup 7703  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-n0 10592  df-z 10659  df-uz 10874  df-fz 11450  df-fzo 11561
This theorem is referenced by:  iunmbl  21046  volsup  21049  voliunnfl  28447
  Copyright terms: Public domain W3C validator