MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundisj Structured version   Unicode version

Theorem iundisj 22084
Description: Rewrite a countable union as a disjoint union. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypothesis
Ref Expression
iundisj.1  |-  ( n  =  k  ->  A  =  B )
Assertion
Ref Expression
iundisj  |-  U_ n  e.  NN  A  =  U_ n  e.  NN  ( A  \  U_ k  e.  ( 1..^ n ) B )
Distinct variable groups:    k, n    A, k    B, n
Allowed substitution hints:    A( n)    B( k)

Proof of Theorem iundisj
Dummy variables  x  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3581 . . . . . . . . . 10  |-  { n  e.  NN  |  x  e.  A }  C_  NN
2 nnuz 11141 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
31, 2sseqtri 3531 . . . . . . . . 9  |-  { n  e.  NN  |  x  e.  A }  C_  ( ZZ>=
`  1 )
4 rabn0 3814 . . . . . . . . . 10  |-  ( { n  e.  NN  |  x  e.  A }  =/=  (/)  <->  E. n  e.  NN  x  e.  A )
54biimpri 206 . . . . . . . . 9  |-  ( E. n  e.  NN  x  e.  A  ->  { n  e.  NN  |  x  e.  A }  =/=  (/) )
6 infmssuzcl 11190 . . . . . . . . 9  |-  ( ( { n  e.  NN  |  x  e.  A }  C_  ( ZZ>= `  1
)  /\  { n  e.  NN  |  x  e.  A }  =/=  (/) )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  x  e.  A } )
73, 5, 6sylancr 663 . . . . . . . 8  |-  ( E. n  e.  NN  x  e.  A  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  {
n  e.  NN  |  x  e.  A }
)
8 nfrab1 3038 . . . . . . . . . 10  |-  F/_ n { n  e.  NN  |  x  e.  A }
9 nfcv 2619 . . . . . . . . . 10  |-  F/_ n RR
10 nfcv 2619 . . . . . . . . . 10  |-  F/_ n `'  <
118, 9, 10nfsup 7928 . . . . . . . . 9  |-  F/_ n sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )
12 nfcv 2619 . . . . . . . . 9  |-  F/_ n NN
1311nfcsb1 3445 . . . . . . . . . 10  |-  F/_ n [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A
1413nfcri 2612 . . . . . . . . 9  |-  F/ n  x  e.  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A
15 csbeq1a 3439 . . . . . . . . . 10  |-  ( n  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  A  =  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A )
1615eleq2d 2527 . . . . . . . . 9  |-  ( n  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( x  e.  A  <->  x  e.  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A ) )
1711, 12, 14, 16elrabf 3255 . . . . . . . 8  |-  ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e. 
{ n  e.  NN  |  x  e.  A } 
<->  ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN  /\  x  e.  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A
) )
187, 17sylib 196 . . . . . . 7  |-  ( E. n  e.  NN  x  e.  A  ->  ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN  /\  x  e. 
[_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A ) )
1918simpld 459 . . . . . 6  |-  ( E. n  e.  NN  x  e.  A  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN )
2018simprd 463 . . . . . . 7  |-  ( E. n  e.  NN  x  e.  A  ->  x  e. 
[_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A )
2119nnred 10571 . . . . . . . . 9  |-  ( E. n  e.  NN  x  e.  A  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  RR )
2221ltnrd 9736 . . . . . . . 8  |-  ( E. n  e.  NN  x  e.  A  ->  -.  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
23 eliun 4337 . . . . . . . . 9  |-  ( x  e.  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B  <->  E. k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) x  e.  B )
2421ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  RR )
25 elfzouz 11830 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )  -> 
k  e.  ( ZZ>= ` 
1 ) )
2625, 2syl6eleqr 2556 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )  -> 
k  e.  NN )
2726ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  e.  NN )
2827nnred 10571 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  e.  RR )
29 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  x  e.  B )
30 iundisj.1 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  A  =  B )
3130eleq2d 2527 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
x  e.  A  <->  x  e.  B ) )
3231elrab 3257 . . . . . . . . . . . . . 14  |-  ( k  e.  { n  e.  NN  |  x  e.  A }  <->  ( k  e.  NN  /\  x  e.  B ) )
3327, 29, 32sylanbrc 664 . . . . . . . . . . . . 13  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  e.  { n  e.  NN  |  x  e.  A } )
34 infmssuzle 11189 . . . . . . . . . . . . 13  |-  ( ( { n  e.  NN  |  x  e.  A }  C_  ( ZZ>= `  1
)  /\  k  e.  { n  e.  NN  |  x  e.  A }
)  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <_  k
)
353, 33, 34sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <_  k
)
36 elfzolt2 11835 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )  -> 
k  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
3736ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  k  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
3824, 28, 24, 35, 37lelttrd 9757 . . . . . . . . . . 11  |-  ( ( ( E. n  e.  NN  x  e.  A  /\  k  e.  (
1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  /\  x  e.  B )  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) )
3938ex 434 . . . . . . . . . 10  |-  ( ( E. n  e.  NN  x  e.  A  /\  k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )  ->  ( x  e.  B  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
4039rexlimdva 2949 . . . . . . . . 9  |-  ( E. n  e.  NN  x  e.  A  ->  ( E. k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) x  e.  B  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
4123, 40syl5bi 217 . . . . . . . 8  |-  ( E. n  e.  NN  x  e.  A  ->  ( x  e.  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B  ->  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  <  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
4222, 41mtod 177 . . . . . . 7  |-  ( E. n  e.  NN  x  e.  A  ->  -.  x  e.  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B )
4320, 42eldifd 3482 . . . . . 6  |-  ( E. n  e.  NN  x  e.  A  ->  x  e.  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) )
44 csbeq1 3433 . . . . . . . . 9  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  [_ m  /  n ]_ A  =  [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A )
45 oveq2 6304 . . . . . . . . . 10  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( 1..^ m )  =  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) )
4645iuneq1d 4357 . . . . . . . . 9  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  U_ k  e.  ( 1..^ m ) B  =  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B )
4744, 46difeq12d 3619 . . . . . . . 8  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( [_ m  /  n ]_ A  \  U_ k  e.  (
1..^ m ) B )  =  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) )
4847eleq2d 2527 . . . . . . 7  |-  ( m  =  sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  ->  ( x  e.  ( [_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B )  <-> 
x  e.  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^
sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) ) )
4948rspcev 3210 . . . . . 6  |-  ( ( sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  e.  NN  /\  x  e.  ( [_ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  )  /  n ]_ A  \  U_ k  e.  ( 1..^ sup ( { n  e.  NN  |  x  e.  A } ,  RR ,  `'  <  ) ) B ) )  ->  E. m  e.  NN  x  e.  (
[_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) )
5019, 43, 49syl2anc 661 . . . . 5  |-  ( E. n  e.  NN  x  e.  A  ->  E. m  e.  NN  x  e.  (
[_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) )
51 nfv 1708 . . . . . 6  |-  F/ m  x  e.  ( A  \ 
U_ k  e.  ( 1..^ n ) B )
52 nfcsb1v 3446 . . . . . . . 8  |-  F/_ n [_ m  /  n ]_ A
53 nfcv 2619 . . . . . . . 8  |-  F/_ n U_ k  e.  (
1..^ m ) B
5452, 53nfdif 3621 . . . . . . 7  |-  F/_ n
( [_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B )
5554nfcri 2612 . . . . . 6  |-  F/ n  x  e.  ( [_ m  /  n ]_ A  \ 
U_ k  e.  ( 1..^ m ) B )
56 csbeq1a 3439 . . . . . . . 8  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
57 oveq2 6304 . . . . . . . . 9  |-  ( n  =  m  ->  (
1..^ n )  =  ( 1..^ m ) )
5857iuneq1d 4357 . . . . . . . 8  |-  ( n  =  m  ->  U_ k  e.  ( 1..^ n ) B  =  U_ k  e.  ( 1..^ m ) B )
5956, 58difeq12d 3619 . . . . . . 7  |-  ( n  =  m  ->  ( A  \  U_ k  e.  ( 1..^ n ) B )  =  (
[_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) )
6059eleq2d 2527 . . . . . 6  |-  ( n  =  m  ->  (
x  e.  ( A 
\  U_ k  e.  ( 1..^ n ) B )  <->  x  e.  ( [_ m  /  n ]_ A  \  U_ k  e.  ( 1..^ m ) B ) ) )
6151, 55, 60cbvrex 3081 . . . . 5  |-  ( E. n  e.  NN  x  e.  ( A  \  U_ k  e.  ( 1..^ n ) B )  <->  E. m  e.  NN  x  e.  ( [_ m  /  n ]_ A  \ 
U_ k  e.  ( 1..^ m ) B ) )
6250, 61sylibr 212 . . . 4  |-  ( E. n  e.  NN  x  e.  A  ->  E. n  e.  NN  x  e.  ( A  \  U_ k  e.  ( 1..^ n ) B ) )
63 eldifi 3622 . . . . 5  |-  ( x  e.  ( A  \  U_ k  e.  (
1..^ n ) B )  ->  x  e.  A )
6463reximi 2925 . . . 4  |-  ( E. n  e.  NN  x  e.  ( A  \  U_ k  e.  ( 1..^ n ) B )  ->  E. n  e.  NN  x  e.  A )
6562, 64impbii 188 . . 3  |-  ( E. n  e.  NN  x  e.  A  <->  E. n  e.  NN  x  e.  ( A  \ 
U_ k  e.  ( 1..^ n ) B ) )
66 eliun 4337 . . 3  |-  ( x  e.  U_ n  e.  NN  A  <->  E. n  e.  NN  x  e.  A
)
67 eliun 4337 . . 3  |-  ( x  e.  U_ n  e.  NN  ( A  \  U_ k  e.  (
1..^ n ) B )  <->  E. n  e.  NN  x  e.  ( A  \ 
U_ k  e.  ( 1..^ n ) B ) )
6865, 66, 673bitr4i 277 . 2  |-  ( x  e.  U_ n  e.  NN  A  <->  x  e.  U_ n  e.  NN  ( A  \  U_ k  e.  ( 1..^ n ) B ) )
6968eqriv 2453 1  |-  U_ n  e.  NN  A  =  U_ n  e.  NN  ( A  \  U_ k  e.  ( 1..^ n ) B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   E.wrex 2808   {crab 2811   [_csb 3430    \ cdif 3468    C_ wss 3471   (/)c0 3793   U_ciun 4332   class class class wbr 4456   `'ccnv 5007   ` cfv 5594  (class class class)co 6296   supcsup 7918   RRcr 9508   1c1 9510    < clt 9645    <_ cle 9646   NNcn 10556   ZZ>=cuz 11106  ..^cfzo 11821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-fzo 11822
This theorem is referenced by:  iunmbl  22089  volsup  22092  carsgclctunlem3  28462  voliunnfl  30263
  Copyright terms: Public domain W3C validator