MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundif2 Structured version   Visualization version   Unicode version

Theorem iundif2 4345
Description: Indexed union of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use intiin 4332 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
iundif2  |-  U_ x  e.  A  ( B  \  C )  =  ( B  \  |^|_ x  e.  A  C )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem iundif2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldif 3414 . . . . 5  |-  ( y  e.  ( B  \  C )  <->  ( y  e.  B  /\  -.  y  e.  C ) )
21rexbii 2889 . . . 4  |-  ( E. x  e.  A  y  e.  ( B  \  C )  <->  E. x  e.  A  ( y  e.  B  /\  -.  y  e.  C ) )
3 r19.42v 2945 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  /\  -.  y  e.  C
)  <->  ( y  e.  B  /\  E. x  e.  A  -.  y  e.  C ) )
4 rexnal 2836 . . . . . 6  |-  ( E. x  e.  A  -.  y  e.  C  <->  -.  A. x  e.  A  y  e.  C )
5 vex 3048 . . . . . . 7  |-  y  e. 
_V
6 eliin 4284 . . . . . . 7  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  C  <->  A. x  e.  A  y  e.  C ) )
75, 6ax-mp 5 . . . . . 6  |-  ( y  e.  |^|_ x  e.  A  C 
<-> 
A. x  e.  A  y  e.  C )
84, 7xchbinxr 313 . . . . 5  |-  ( E. x  e.  A  -.  y  e.  C  <->  -.  y  e.  |^|_ x  e.  A  C )
98anbi2i 700 . . . 4  |-  ( ( y  e.  B  /\  E. x  e.  A  -.  y  e.  C )  <->  ( y  e.  B  /\  -.  y  e.  |^|_ x  e.  A  C )
)
102, 3, 93bitri 275 . . 3  |-  ( E. x  e.  A  y  e.  ( B  \  C )  <->  ( y  e.  B  /\  -.  y  e.  |^|_ x  e.  A  C ) )
11 eliun 4283 . . 3  |-  ( y  e.  U_ x  e.  A  ( B  \  C )  <->  E. x  e.  A  y  e.  ( B  \  C ) )
12 eldif 3414 . . 3  |-  ( y  e.  ( B  \  |^|_ x  e.  A  C
)  <->  ( y  e.  B  /\  -.  y  e.  |^|_ x  e.  A  C ) )
1310, 11, 123bitr4i 281 . 2  |-  ( y  e.  U_ x  e.  A  ( B  \  C )  <->  y  e.  ( B  \  |^|_ x  e.  A  C )
)
1413eqriv 2448 1  |-  U_ x  e.  A  ( B  \  C )  =  ( B  \  |^|_ x  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   A.wral 2737   E.wrex 2738   _Vcvv 3045    \ cdif 3401   U_ciun 4278   |^|_ciin 4279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431
This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ral 2742  df-rex 2743  df-v 3047  df-dif 3407  df-iun 4280  df-iin 4281
This theorem is referenced by:  iuncld  20060  pnrmopn  20359  alexsublem  21059  bcth3  22299  iundifdifd  28177  iundifdif  28178
  Copyright terms: Public domain W3C validator