MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundif2 Structured version   Visualization version   Unicode version

Theorem iundif2 4336
Description: Indexed union of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use intiin 4323 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
iundif2  |-  U_ x  e.  A  ( B  \  C )  =  ( B  \  |^|_ x  e.  A  C )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem iundif2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldif 3400 . . . . 5  |-  ( y  e.  ( B  \  C )  <->  ( y  e.  B  /\  -.  y  e.  C ) )
21rexbii 2881 . . . 4  |-  ( E. x  e.  A  y  e.  ( B  \  C )  <->  E. x  e.  A  ( y  e.  B  /\  -.  y  e.  C ) )
3 r19.42v 2931 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  /\  -.  y  e.  C
)  <->  ( y  e.  B  /\  E. x  e.  A  -.  y  e.  C ) )
4 rexnal 2836 . . . . . 6  |-  ( E. x  e.  A  -.  y  e.  C  <->  -.  A. x  e.  A  y  e.  C )
5 vex 3034 . . . . . . 7  |-  y  e. 
_V
6 eliin 4275 . . . . . . 7  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  C  <->  A. x  e.  A  y  e.  C ) )
75, 6ax-mp 5 . . . . . 6  |-  ( y  e.  |^|_ x  e.  A  C 
<-> 
A. x  e.  A  y  e.  C )
84, 7xchbinxr 318 . . . . 5  |-  ( E. x  e.  A  -.  y  e.  C  <->  -.  y  e.  |^|_ x  e.  A  C )
98anbi2i 708 . . . 4  |-  ( ( y  e.  B  /\  E. x  e.  A  -.  y  e.  C )  <->  ( y  e.  B  /\  -.  y  e.  |^|_ x  e.  A  C )
)
102, 3, 93bitri 279 . . 3  |-  ( E. x  e.  A  y  e.  ( B  \  C )  <->  ( y  e.  B  /\  -.  y  e.  |^|_ x  e.  A  C ) )
11 eliun 4274 . . 3  |-  ( y  e.  U_ x  e.  A  ( B  \  C )  <->  E. x  e.  A  y  e.  ( B  \  C ) )
12 eldif 3400 . . 3  |-  ( y  e.  ( B  \  |^|_ x  e.  A  C
)  <->  ( y  e.  B  /\  -.  y  e.  |^|_ x  e.  A  C ) )
1310, 11, 123bitr4i 285 . 2  |-  ( y  e.  U_ x  e.  A  ( B  \  C )  <->  y  e.  ( B  \  |^|_ x  e.  A  C )
)
1413eqriv 2468 1  |-  U_ x  e.  A  ( B  \  C )  =  ( B  \  |^|_ x  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757   _Vcvv 3031    \ cdif 3387   U_ciun 4269   |^|_ciin 4270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-rex 2762  df-v 3033  df-dif 3393  df-iun 4271  df-iin 4272
This theorem is referenced by:  iuncld  20137  pnrmopn  20436  alexsublem  21137  bcth3  22377  iundifdifd  28254  iundifdif  28255
  Copyright terms: Public domain W3C validator