Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunconlem2 Structured version   Unicode version

Theorem iunconlem2 32815
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart http://us.metamath.org/other/completeusersproof/iunconlem2vd.html. As it is verified by the Metamath program, iunconlem2 32815 verifies http://us.metamath.org/other/completeusersproof/iunconlem2vd.html. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
iunconlem2.1  |-  ( ps  <->  ( ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J )  /\  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) )  /\  U_ k  e.  A  B  C_  ( u  u.  v
) ) )
iunconlem2.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
iunconlem2.3  |-  ( (
ph  /\  k  e.  A )  ->  B  C_  X )
iunconlem2.4  |-  ( (
ph  /\  k  e.  A )  ->  P  e.  B )
iunconlem2.5  |-  ( (
ph  /\  k  e.  A )  ->  ( Jt  B )  e.  Con )
Assertion
Ref Expression
iunconlem2  |-  ( ph  ->  ( Jt  U_ k  e.  A  B )  e.  Con )
Distinct variable groups:    u, k,
v, ph    A, k, u, v    u, B, v   
k, J, u, v    P, k    k, X, u, v
Allowed substitution hints:    ps( v, u, k)    B( k)    P( v, u)

Proof of Theorem iunconlem2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 iunconlem2.2 . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 iunconlem2.3 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  C_  X )
32ex 434 . . . 4  |-  ( ph  ->  ( k  e.  A  ->  B  C_  X )
)
43ralrimiv 2876 . . 3  |-  ( ph  ->  A. k  e.  A  B  C_  X )
5 iunss 4366 . . . 4  |-  ( U_ k  e.  A  B  C_  X  <->  A. k  e.  A  B  C_  X )
65biimpri 206 . . 3  |-  ( A. k  e.  A  B  C_  X  ->  U_ k  e.  A  B  C_  X
)
74, 6syl 16 . 2  |-  ( ph  ->  U_ k  e.  A  B  C_  X )
8 iunconlem2.1 . . . . . . . . . . . 12  |-  ( ps  <->  ( ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J )  /\  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) )  /\  U_ k  e.  A  B  C_  ( u  u.  v
) ) )
98biimpi 194 . . . . . . . . . . . . . . 15  |-  ( ps 
->  ( ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J
)  /\  ( u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  ( v  i^i  U_ k  e.  A  B
)  =/=  (/) )  /\  ( u  i^i  v
)  C_  ( X  \ 
U_ k  e.  A  B ) )  /\  U_ k  e.  A  B  C_  ( u  u.  v
) ) )
109simprd 463 . . . . . . . . . . . . . 14  |-  ( ps 
->  U_ k  e.  A  B  C_  ( u  u.  v ) )
11 simp-4r 766 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J )  /\  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) )  /\  U_ k  e.  A  B  C_  ( u  u.  v
) )  ->  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )
129, 11syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ps 
->  ( u  i^i  U_ k  e.  A  B
)  =/=  (/) )
13 n0 3794 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  <->  E. w  w  e.  ( u  i^i  U_ k  e.  A  B
) )
1413biimpi 194 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  ->  E. w  w  e.  ( u  i^i  U_ k  e.  A  B ) )
1512, 14syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ps 
->  E. w  w  e.  ( u  i^i  U_ k  e.  A  B
) )
16 inss2 3719 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  i^i  U_ k  e.  A  B )  C_  U_ k  e.  A  B
17 id 22 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  ( u  i^i  U_ k  e.  A  B )  ->  w  e.  ( u  i^i  U_ k  e.  A  B
) )
1816, 17sseldi 3502 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  ( u  i^i  U_ k  e.  A  B )  ->  w  e.  U_ k  e.  A  B )
19 eliun 4330 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  U_ k  e.  A  B  <->  E. k  e.  A  w  e.  B )
2019biimpi 194 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  U_ k  e.  A  B  ->  E. k  e.  A  w  e.  B )
2118, 20syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ( u  i^i  U_ k  e.  A  B )  ->  E. k  e.  A  w  e.  B )
22 rexn0 3930 . . . . . . . . . . . . . . . . . . 19  |-  ( E. k  e.  A  w  e.  B  ->  A  =/=  (/) )
2321, 22syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( u  i^i  U_ k  e.  A  B )  ->  A  =/=  (/) )
2423exlimiv 1698 . . . . . . . . . . . . . . . . 17  |-  ( E. w  w  e.  ( u  i^i  U_ k  e.  A  B )  ->  A  =/=  (/) )
2515, 24syl 16 . . . . . . . . . . . . . . . 16  |-  ( ps 
->  A  =/=  (/) )
26 nfv 1683 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ k ( ph  /\  u  e.  J )
27 nfv 1683 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ k  v  e.  J
2826, 27nfan 1875 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/ k ( ( ph  /\  u  e.  J )  /\  v  e.  J
)
29 nfcv 2629 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ k
u
30 nfiu1 4355 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ k U_ k  e.  A  B
3129, 30nfin 3705 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/_ k
( u  i^i  U_ k  e.  A  B
)
32 nfcv 2629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/_ k (/)
3331, 32nfne 2798 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/ k ( u  i^i  U_ k  e.  A  B
)  =/=  (/)
3428, 33nfan 1875 . . . . . . . . . . . . . . . . . . . . 21  |-  F/ k ( ( ( ph  /\  u  e.  J )  /\  v  e.  J
)  /\  ( u  i^i  U_ k  e.  A  B )  =/=  (/) )
35 nfcv 2629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/_ k
v
3635, 30nfin 3705 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/_ k
( v  i^i  U_ k  e.  A  B
)
3736, 32nfne 2798 . . . . . . . . . . . . . . . . . . . . 21  |-  F/ k ( v  i^i  U_ k  e.  A  B
)  =/=  (/)
3834, 37nfan 1875 . . . . . . . . . . . . . . . . . . . 20  |-  F/ k ( ( ( (
ph  /\  u  e.  J )  /\  v  e.  J )  /\  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )
39 nfcv 2629 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ k
( u  i^i  v
)
40 nfcv 2629 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/_ k X
4140, 30nfdif 3625 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ k
( X  \  U_ k  e.  A  B
)
4239, 41nfss 3497 . . . . . . . . . . . . . . . . . . . 20  |-  F/ k ( u  i^i  v
)  C_  ( X  \ 
U_ k  e.  A  B )
4338, 42nfan 1875 . . . . . . . . . . . . . . . . . . 19  |-  F/ k ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J )  /\  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) )
44 nfcv 2629 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ k
( u  u.  v
)
4530, 44nfss 3497 . . . . . . . . . . . . . . . . . . 19  |-  F/ k
U_ k  e.  A  B  C_  ( u  u.  v )
4643, 45nfan 1875 . . . . . . . . . . . . . . . . . 18  |-  F/ k ( ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J
)  /\  ( u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  ( v  i^i  U_ k  e.  A  B
)  =/=  (/) )  /\  ( u  i^i  v
)  C_  ( X  \ 
U_ k  e.  A  B ) )  /\  U_ k  e.  A  B  C_  ( u  u.  v
) )
478nfbii 1624 . . . . . . . . . . . . . . . . . 18  |-  ( F/ k ps  <->  F/ k
( ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J
)  /\  ( u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  ( v  i^i  U_ k  e.  A  B
)  =/=  (/) )  /\  ( u  i^i  v
)  C_  ( X  \ 
U_ k  e.  A  B ) )  /\  U_ k  e.  A  B  C_  ( u  u.  v
) ) )
4846, 47mpbir 209 . . . . . . . . . . . . . . . . 17  |-  F/ k ps
49 simp-6l 769 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J )  /\  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) )  /\  U_ k  e.  A  B  C_  ( u  u.  v
) )  ->  ph )
509, 49syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ps 
->  ph )
51 iunconlem2.4 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  A )  ->  P  e.  B )
5250, 51sylan 471 . . . . . . . . . . . . . . . . . 18  |-  ( ( ps  /\  k  e.  A )  ->  P  e.  B )
5352ex 434 . . . . . . . . . . . . . . . . 17  |-  ( ps 
->  ( k  e.  A  ->  P  e.  B ) )
5448, 53ralrimi 2864 . . . . . . . . . . . . . . . 16  |-  ( ps 
->  A. k  e.  A  P  e.  B )
55 r19.2z 3917 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  =/=  (/)  /\  A. k  e.  A  P  e.  B )  ->  E. k  e.  A  P  e.  B )
5655ancoms 453 . . . . . . . . . . . . . . . . 17  |-  ( ( A. k  e.  A  P  e.  B  /\  A  =/=  (/) )  ->  E. k  e.  A  P  e.  B )
5756ancoms 453 . . . . . . . . . . . . . . . 16  |-  ( ( A  =/=  (/)  /\  A. k  e.  A  P  e.  B )  ->  E. k  e.  A  P  e.  B )
5825, 54, 57syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ps 
->  E. k  e.  A  P  e.  B )
59 eliun 4330 . . . . . . . . . . . . . . . 16  |-  ( P  e.  U_ k  e.  A  B  <->  E. k  e.  A  P  e.  B )
6059biimpri 206 . . . . . . . . . . . . . . 15  |-  ( E. k  e.  A  P  e.  B  ->  P  e. 
U_ k  e.  A  B )
6158, 60syl 16 . . . . . . . . . . . . . 14  |-  ( ps 
->  P  e.  U_ k  e.  A  B )
6210, 61sseldd 3505 . . . . . . . . . . . . 13  |-  ( ps 
->  P  e.  (
u  u.  v ) )
63 elun 3645 . . . . . . . . . . . . . 14  |-  ( P  e.  ( u  u.  v )  <->  ( P  e.  u  \/  P  e.  v ) )
6463biimpi 194 . . . . . . . . . . . . 13  |-  ( P  e.  ( u  u.  v )  ->  ( P  e.  u  \/  P  e.  v )
)
6562, 64syl 16 . . . . . . . . . . . 12  |-  ( ps 
->  ( P  e.  u  \/  P  e.  v
) )
668, 65sylbir 213 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J )  /\  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) )  /\  U_ k  e.  A  B  C_  ( u  u.  v
) )  ->  ( P  e.  u  \/  P  e.  v )
)
6750, 1syl 16 . . . . . . . . . . . . . 14  |-  ( ps 
->  J  e.  (TopOn `  X ) )
6850, 2sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ps  /\  k  e.  A )  ->  B  C_  X )
69 iunconlem2.5 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  ( Jt  B )  e.  Con )
7050, 69sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ps  /\  k  e.  A )  ->  ( Jt  B )  e.  Con )
71 simp-6r 770 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J )  /\  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) )  /\  U_ k  e.  A  B  C_  ( u  u.  v
) )  ->  u  e.  J )
729, 71syl 16 . . . . . . . . . . . . . 14  |-  ( ps 
->  u  e.  J
)
73 simp-5r 768 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J )  /\  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) )  /\  U_ k  e.  A  B  C_  ( u  u.  v
) )  ->  v  e.  J )
749, 73syl 16 . . . . . . . . . . . . . 14  |-  ( ps 
->  v  e.  J
)
75 simpllr 758 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J )  /\  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) )  /\  U_ k  e.  A  B  C_  ( u  u.  v
) )  ->  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )
769, 75syl 16 . . . . . . . . . . . . . 14  |-  ( ps 
->  ( v  i^i  U_ k  e.  A  B
)  =/=  (/) )
77 simplr 754 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J )  /\  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) )  /\  U_ k  e.  A  B  C_  ( u  u.  v
) )  ->  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) )
789, 77syl 16 . . . . . . . . . . . . . 14  |-  ( ps 
->  ( u  i^i  v
)  C_  ( X  \ 
U_ k  e.  A  B ) )
7967, 68, 52, 70, 72, 74, 76, 78, 10, 48iunconlem 19694 . . . . . . . . . . . . 13  |-  ( ps 
->  -.  P  e.  u
)
80 incom 3691 . . . . . . . . . . . . . . 15  |-  ( v  i^i  u )  =  ( u  i^i  v
)
8180, 78syl5eqss 3548 . . . . . . . . . . . . . 14  |-  ( ps 
->  ( v  i^i  u
)  C_  ( X  \ 
U_ k  e.  A  B ) )
82 uncom 3648 . . . . . . . . . . . . . . 15  |-  ( v  u.  u )  =  ( u  u.  v
)
8310, 82syl6sseqr 3551 . . . . . . . . . . . . . 14  |-  ( ps 
->  U_ k  e.  A  B  C_  ( v  u.  u ) )
8467, 68, 52, 70, 74, 72, 12, 81, 83, 48iunconlem 19694 . . . . . . . . . . . . 13  |-  ( ps 
->  -.  P  e.  v )
85 pm4.56 495 . . . . . . . . . . . . . . 15  |-  ( ( -.  P  e.  u  /\  -.  P  e.  v )  <->  -.  ( P  e.  u  \/  P  e.  v ) )
8685biimpi 194 . . . . . . . . . . . . . 14  |-  ( ( -.  P  e.  u  /\  -.  P  e.  v )  ->  -.  ( P  e.  u  \/  P  e.  v )
)
8786idiALT 32297 . . . . . . . . . . . . 13  |-  ( ( -.  P  e.  u  /\  -.  P  e.  v )  ->  -.  ( P  e.  u  \/  P  e.  v )
)
8879, 84, 87syl2anc 661 . . . . . . . . . . . 12  |-  ( ps 
->  -.  ( P  e.  u  \/  P  e.  v ) )
898, 88sylbir 213 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J )  /\  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) )  /\  U_ k  e.  A  B  C_  ( u  u.  v
) )  ->  -.  ( P  e.  u  \/  P  e.  v
) )
9066, 89pm2.65da 576 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  u  e.  J )  /\  v  e.  J )  /\  (
u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) )  ->  -.  U_ k  e.  A  B  C_  ( u  u.  v
) )
9190ex 434 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J
)  /\  ( u  i^i  U_ k  e.  A  B )  =/=  (/) )  /\  ( v  i^i  U_ k  e.  A  B
)  =/=  (/) )  -> 
( ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B )  ->  -.  U_ k  e.  A  B  C_  ( u  u.  v ) ) )
9291ex 434 . . . . . . . 8  |-  ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  J
)  /\  ( u  i^i  U_ k  e.  A  B )  =/=  (/) )  -> 
( ( v  i^i  U_ k  e.  A  B )  =/=  (/)  ->  (
( u  i^i  v
)  C_  ( X  \ 
U_ k  e.  A  B )  ->  -.  U_ k  e.  A  B  C_  ( u  u.  v
) ) ) )
9392ex3 32424 . . . . . . 7  |-  ( (
ph  /\  u  e.  J  /\  v  e.  J
)  ->  ( (
u  i^i  U_ k  e.  A  B )  =/=  (/)  ->  ( ( v  i^i  U_ k  e.  A  B )  =/=  (/)  ->  (
( u  i^i  v
)  C_  ( X  \ 
U_ k  e.  A  B )  ->  -.  U_ k  e.  A  B  C_  ( u  u.  v
) ) ) ) )
94933impd 1210 . . . . . 6  |-  ( (
ph  /\  u  e.  J  /\  v  e.  J
)  ->  ( (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) )
95943expia 1198 . . . . 5  |-  ( (
ph  /\  u  e.  J )  ->  (
v  e.  J  -> 
( ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) ) )
9695ex 434 . . . 4  |-  ( ph  ->  ( u  e.  J  ->  ( v  e.  J  ->  ( ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) ) ) )
9796impd 431 . . 3  |-  ( ph  ->  ( ( u  e.  J  /\  v  e.  J )  ->  (
( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) ) )
9897ralrimivv 2884 . 2  |-  ( ph  ->  A. u  e.  J  A. v  e.  J  ( ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) )
99 connsub 19688 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U_ k  e.  A  B  C_  X )  ->  (
( Jt  U_ k  e.  A  B )  e.  Con  <->  A. u  e.  J  A. v  e.  J  (
( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) ) )
10099biimp3ar 1329 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U_ k  e.  A  B  C_  X  /\  A. u  e.  J  A. v  e.  J  ( (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) )  ->  ( Jt  U_ k  e.  A  B
)  e.  Con )
1011, 7, 98, 100syl3anc 1228 1  |-  ( ph  ->  ( Jt  U_ k  e.  A  B )  e.  Con )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973   E.wex 1596   F/wnf 1599    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   U_ciun 4325   ` cfv 5586  (class class class)co 6282   ↾t crest 14672  TopOnctopon 19162   Conccon 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-oadd 7131  df-er 7308  df-en 7514  df-fin 7517  df-fi 7867  df-rest 14674  df-topgen 14695  df-top 19166  df-bases 19168  df-topon 19169  df-cld 19286  df-con 19679
This theorem is referenced by:  iunconALT  32816
  Copyright terms: Public domain W3C validator