MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncon Structured version   Unicode version

Theorem iuncon 18991
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iuncon.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
iuncon.3  |-  ( (
ph  /\  k  e.  A )  ->  B  C_  X )
iuncon.4  |-  ( (
ph  /\  k  e.  A )  ->  P  e.  B )
iuncon.5  |-  ( (
ph  /\  k  e.  A )  ->  ( Jt  B )  e.  Con )
Assertion
Ref Expression
iuncon  |-  ( ph  ->  ( Jt  U_ k  e.  A  B )  e.  Con )
Distinct variable groups:    A, k    k, J    P, k    k, X    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem iuncon
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 458 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  U_ k  e.  A  B  C_  (
u  u.  v ) )
2 simplr1 1025 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( u  i^i  U_ k  e.  A  B )  =/=  (/) )
3 n0 3643 . . . . . . . . . . 11  |-  ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  <->  E. v  v  e.  ( u  i^i  U_ k  e.  A  B
) )
4 inss2 3568 . . . . . . . . . . . . . 14  |-  ( u  i^i  U_ k  e.  A  B )  C_  U_ k  e.  A  B
54sseli 3349 . . . . . . . . . . . . 13  |-  ( v  e.  ( u  i^i  U_ k  e.  A  B )  ->  v  e.  U_ k  e.  A  B )
6 eliun 4172 . . . . . . . . . . . . . 14  |-  ( v  e.  U_ k  e.  A  B  <->  E. k  e.  A  v  e.  B )
7 rexn0 3779 . . . . . . . . . . . . . 14  |-  ( E. k  e.  A  v  e.  B  ->  A  =/=  (/) )
86, 7sylbi 195 . . . . . . . . . . . . 13  |-  ( v  e.  U_ k  e.  A  B  ->  A  =/=  (/) )
95, 8syl 16 . . . . . . . . . . . 12  |-  ( v  e.  ( u  i^i  U_ k  e.  A  B )  ->  A  =/=  (/) )
109exlimiv 1693 . . . . . . . . . . 11  |-  ( E. v  v  e.  ( u  i^i  U_ k  e.  A  B )  ->  A  =/=  (/) )
113, 10sylbi 195 . . . . . . . . . 10  |-  ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  ->  A  =/=  (/) )
122, 11syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  A  =/=  (/) )
13 simplll 752 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ph )
14 iuncon.4 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  P  e.  B )
1514ralrimiva 2797 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  A  P  e.  B )
1613, 15syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  A. k  e.  A  P  e.  B )
17 r19.2z 3766 . . . . . . . . 9  |-  ( ( A  =/=  (/)  /\  A. k  e.  A  P  e.  B )  ->  E. k  e.  A  P  e.  B )
1812, 16, 17syl2anc 656 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  E. k  e.  A  P  e.  B )
19 eliun 4172 . . . . . . . 8  |-  ( P  e.  U_ k  e.  A  B  <->  E. k  e.  A  P  e.  B )
2018, 19sylibr 212 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  P  e.  U_ k  e.  A  B
)
211, 20sseldd 3354 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  P  e.  ( u  u.  v
) )
22 elun 3494 . . . . . 6  |-  ( P  e.  ( u  u.  v )  <->  ( P  e.  u  \/  P  e.  v ) )
2321, 22sylib 196 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( P  e.  u  \/  P  e.  v ) )
24 iuncon.2 . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2513, 24syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  J  e.  (TopOn `  X ) )
26 iuncon.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  C_  X )
2713, 26sylan 468 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  /\  k  e.  A )  ->  B  C_  X )
2813, 14sylan 468 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  /\  k  e.  A )  ->  P  e.  B )
29 iuncon.5 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  ( Jt  B )  e.  Con )
3013, 29sylan 468 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  /\  k  e.  A )  ->  ( Jt  B )  e.  Con )
31 simpllr 753 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( u  e.  J  /\  v  e.  J ) )
3231simpld 456 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  u  e.  J )
3331simprd 460 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  v  e.  J )
34 simplr2 1026 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( v  i^i  U_ k  e.  A  B )  =/=  (/) )
35 simplr3 1027 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )
36 nfv 1678 . . . . . . . . 9  |-  F/ k ( ph  /\  (
u  e.  J  /\  v  e.  J )
)
37 nfcv 2577 . . . . . . . . . . . 12  |-  F/_ k
u
38 nfiu1 4197 . . . . . . . . . . . 12  |-  F/_ k U_ k  e.  A  B
3937, 38nfin 3554 . . . . . . . . . . 11  |-  F/_ k
( u  i^i  U_ k  e.  A  B
)
40 nfcv 2577 . . . . . . . . . . 11  |-  F/_ k (/)
4139, 40nfne 2701 . . . . . . . . . 10  |-  F/ k ( u  i^i  U_ k  e.  A  B
)  =/=  (/)
42 nfcv 2577 . . . . . . . . . . . 12  |-  F/_ k
v
4342, 38nfin 3554 . . . . . . . . . . 11  |-  F/_ k
( v  i^i  U_ k  e.  A  B
)
4443, 40nfne 2701 . . . . . . . . . 10  |-  F/ k ( v  i^i  U_ k  e.  A  B
)  =/=  (/)
45 nfcv 2577 . . . . . . . . . . 11  |-  F/_ k
( u  i^i  v
)
46 nfcv 2577 . . . . . . . . . . . 12  |-  F/_ k X
4746, 38nfdif 3474 . . . . . . . . . . 11  |-  F/_ k
( X  \  U_ k  e.  A  B
)
4845, 47nfss 3346 . . . . . . . . . 10  |-  F/ k ( u  i^i  v
)  C_  ( X  \ 
U_ k  e.  A  B )
4941, 44, 48nf3an 1867 . . . . . . . . 9  |-  F/ k ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )
5036, 49nfan 1865 . . . . . . . 8  |-  F/ k ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )
5137, 42nfun 3509 . . . . . . . . 9  |-  F/_ k
( u  u.  v
)
5238, 51nfss 3346 . . . . . . . 8  |-  F/ k
U_ k  e.  A  B  C_  ( u  u.  v )
5350, 52nfan 1865 . . . . . . 7  |-  F/ k ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )
5425, 27, 28, 30, 32, 33, 34, 35, 1, 53iunconlem 18990 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  -.  P  e.  u )
55 incom 3540 . . . . . . . 8  |-  ( v  i^i  u )  =  ( u  i^i  v
)
5655, 35syl5eqss 3397 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( v  i^i  u )  C_  ( X  \  U_ k  e.  A  B ) )
57 uncom 3497 . . . . . . . 8  |-  ( u  u.  v )  =  ( v  u.  u
)
581, 57syl6sseq 3399 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  U_ k  e.  A  B  C_  (
v  u.  u ) )
5925, 27, 28, 30, 33, 32, 2, 56, 58, 53iunconlem 18990 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  -.  P  e.  v )
60 ioran 487 . . . . . 6  |-  ( -.  ( P  e.  u  \/  P  e.  v
)  <->  ( -.  P  e.  u  /\  -.  P  e.  v ) )
6154, 59, 60sylanbrc 659 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  -.  ( P  e.  u  \/  P  e.  v )
)
6223, 61pm2.65da 573 . . . 4  |-  ( ( ( ph  /\  (
u  e.  J  /\  v  e.  J )
)  /\  ( (
u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) ) )  ->  -.  U_ k  e.  A  B  C_  ( u  u.  v ) )
6362ex 434 . . 3  |-  ( (
ph  /\  ( u  e.  J  /\  v  e.  J ) )  -> 
( ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) )
6463ralrimivva 2806 . 2  |-  ( ph  ->  A. u  e.  J  A. v  e.  J  ( ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) )
6526ralrimiva 2797 . . . 4  |-  ( ph  ->  A. k  e.  A  B  C_  X )
66 iunss 4208 . . . 4  |-  ( U_ k  e.  A  B  C_  X  <->  A. k  e.  A  B  C_  X )
6765, 66sylibr 212 . . 3  |-  ( ph  ->  U_ k  e.  A  B  C_  X )
68 connsub 18984 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U_ k  e.  A  B  C_  X )  ->  (
( Jt  U_ k  e.  A  B )  e.  Con  <->  A. u  e.  J  A. v  e.  J  (
( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) ) )
6924, 67, 68syl2anc 656 . 2  |-  ( ph  ->  ( ( Jt  U_ k  e.  A  B )  e.  Con  <->  A. u  e.  J  A. v  e.  J  ( ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) ) )
7064, 69mpbird 232 1  |-  ( ph  ->  ( Jt  U_ k  e.  A  B )  e.  Con )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 960   E.wex 1591    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714    \ cdif 3322    u. cun 3323    i^i cin 3324    C_ wss 3325   (/)c0 3634   U_ciun 4168   ` cfv 5415  (class class class)co 6090   ↾t crest 14355  TopOnctopon 18458   Conccon 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-oadd 6920  df-er 7097  df-en 7307  df-fin 7310  df-fi 7657  df-rest 14357  df-topgen 14378  df-top 18462  df-bases 18464  df-topon 18465  df-cld 18582  df-con 18975
This theorem is referenced by:  uncon  18992  concompcon  18995
  Copyright terms: Public domain W3C validator