MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncon Unicode version

Theorem iuncon 17444
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iuncon.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
iuncon.3  |-  ( (
ph  /\  k  e.  A )  ->  B  C_  X )
iuncon.4  |-  ( (
ph  /\  k  e.  A )  ->  P  e.  B )
iuncon.5  |-  ( (
ph  /\  k  e.  A )  ->  ( Jt  B )  e.  Con )
Assertion
Ref Expression
iuncon  |-  ( ph  ->  ( Jt  U_ k  e.  A  B )  e.  Con )
Distinct variable groups:    A, k    k, J    P, k    k, X    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem iuncon
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  U_ k  e.  A  B  C_  (
u  u.  v ) )
2 simplr1 999 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( u  i^i  U_ k  e.  A  B )  =/=  (/) )
3 n0 3597 . . . . . . . . . . 11  |-  ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  <->  E. v  v  e.  ( u  i^i  U_ k  e.  A  B
) )
4 inss2 3522 . . . . . . . . . . . . . 14  |-  ( u  i^i  U_ k  e.  A  B )  C_  U_ k  e.  A  B
54sseli 3304 . . . . . . . . . . . . 13  |-  ( v  e.  ( u  i^i  U_ k  e.  A  B )  ->  v  e.  U_ k  e.  A  B )
6 eliun 4057 . . . . . . . . . . . . . 14  |-  ( v  e.  U_ k  e.  A  B  <->  E. k  e.  A  v  e.  B )
7 rexn0 3690 . . . . . . . . . . . . . 14  |-  ( E. k  e.  A  v  e.  B  ->  A  =/=  (/) )
86, 7sylbi 188 . . . . . . . . . . . . 13  |-  ( v  e.  U_ k  e.  A  B  ->  A  =/=  (/) )
95, 8syl 16 . . . . . . . . . . . 12  |-  ( v  e.  ( u  i^i  U_ k  e.  A  B )  ->  A  =/=  (/) )
109exlimiv 1641 . . . . . . . . . . 11  |-  ( E. v  v  e.  ( u  i^i  U_ k  e.  A  B )  ->  A  =/=  (/) )
113, 10sylbi 188 . . . . . . . . . 10  |-  ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  ->  A  =/=  (/) )
122, 11syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  A  =/=  (/) )
13 simplll 735 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ph )
14 iuncon.4 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  P  e.  B )
1514ralrimiva 2749 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  A  P  e.  B )
1613, 15syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  A. k  e.  A  P  e.  B )
17 r19.2z 3677 . . . . . . . . 9  |-  ( ( A  =/=  (/)  /\  A. k  e.  A  P  e.  B )  ->  E. k  e.  A  P  e.  B )
1812, 16, 17syl2anc 643 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  E. k  e.  A  P  e.  B )
19 eliun 4057 . . . . . . . 8  |-  ( P  e.  U_ k  e.  A  B  <->  E. k  e.  A  P  e.  B )
2018, 19sylibr 204 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  P  e.  U_ k  e.  A  B
)
211, 20sseldd 3309 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  P  e.  ( u  u.  v
) )
22 elun 3448 . . . . . 6  |-  ( P  e.  ( u  u.  v )  <->  ( P  e.  u  \/  P  e.  v ) )
2321, 22sylib 189 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( P  e.  u  \/  P  e.  v ) )
24 iuncon.2 . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2513, 24syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  J  e.  (TopOn `  X ) )
26 iuncon.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  C_  X )
2713, 26sylan 458 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  /\  k  e.  A )  ->  B  C_  X )
2813, 14sylan 458 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  /\  k  e.  A )  ->  P  e.  B )
29 iuncon.5 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  ( Jt  B )  e.  Con )
3013, 29sylan 458 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  /\  k  e.  A )  ->  ( Jt  B )  e.  Con )
31 simpllr 736 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( u  e.  J  /\  v  e.  J ) )
3231simpld 446 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  u  e.  J )
3331simprd 450 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  v  e.  J )
34 simplr2 1000 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( v  i^i  U_ k  e.  A  B )  =/=  (/) )
35 simplr3 1001 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )
36 nfv 1626 . . . . . . . . 9  |-  F/ k ( ph  /\  (
u  e.  J  /\  v  e.  J )
)
37 nfcv 2540 . . . . . . . . . . . 12  |-  F/_ k
u
38 nfiu1 4081 . . . . . . . . . . . 12  |-  F/_ k U_ k  e.  A  B
3937, 38nfin 3507 . . . . . . . . . . 11  |-  F/_ k
( u  i^i  U_ k  e.  A  B
)
40 nfcv 2540 . . . . . . . . . . 11  |-  F/_ k (/)
4139, 40nfne 2658 . . . . . . . . . 10  |-  F/ k ( u  i^i  U_ k  e.  A  B
)  =/=  (/)
42 nfcv 2540 . . . . . . . . . . . 12  |-  F/_ k
v
4342, 38nfin 3507 . . . . . . . . . . 11  |-  F/_ k
( v  i^i  U_ k  e.  A  B
)
4443, 40nfne 2658 . . . . . . . . . 10  |-  F/ k ( v  i^i  U_ k  e.  A  B
)  =/=  (/)
45 nfcv 2540 . . . . . . . . . . 11  |-  F/_ k
( u  i^i  v
)
46 nfcv 2540 . . . . . . . . . . . 12  |-  F/_ k X
4746, 38nfdif 3428 . . . . . . . . . . 11  |-  F/_ k
( X  \  U_ k  e.  A  B
)
4845, 47nfss 3301 . . . . . . . . . 10  |-  F/ k ( u  i^i  v
)  C_  ( X  \ 
U_ k  e.  A  B )
4941, 44, 48nf3an 1845 . . . . . . . . 9  |-  F/ k ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )
5036, 49nfan 1842 . . . . . . . 8  |-  F/ k ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )
5137, 42nfun 3463 . . . . . . . . 9  |-  F/_ k
( u  u.  v
)
5238, 51nfss 3301 . . . . . . . 8  |-  F/ k
U_ k  e.  A  B  C_  ( u  u.  v )
5350, 52nfan 1842 . . . . . . 7  |-  F/ k ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )
5425, 27, 28, 30, 32, 33, 34, 35, 1, 53iunconlem 17443 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  -.  P  e.  u )
55 incom 3493 . . . . . . . 8  |-  ( v  i^i  u )  =  ( u  i^i  v
)
5655, 35syl5eqss 3352 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  ( v  i^i  u )  C_  ( X  \  U_ k  e.  A  B ) )
57 uncom 3451 . . . . . . . 8  |-  ( u  u.  v )  =  ( v  u.  u
)
581, 57syl6sseq 3354 . . . . . . 7  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  U_ k  e.  A  B  C_  (
v  u.  u ) )
5925, 27, 28, 30, 33, 32, 2, 56, 58, 53iunconlem 17443 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  -.  P  e.  v )
60 ioran 477 . . . . . 6  |-  ( -.  ( P  e.  u  \/  P  e.  v
)  <->  ( -.  P  e.  u  /\  -.  P  e.  v ) )
6154, 59, 60sylanbrc 646 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
( u  i^i  U_ k  e.  A  B
)  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) ) )  /\  U_ k  e.  A  B  C_  (
u  u.  v ) )  ->  -.  ( P  e.  u  \/  P  e.  v )
)
6223, 61pm2.65da 560 . . . 4  |-  ( ( ( ph  /\  (
u  e.  J  /\  v  e.  J )
)  /\  ( (
u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
u  i^i  v )  C_  ( X  \  U_ k  e.  A  B
) ) )  ->  -.  U_ k  e.  A  B  C_  ( u  u.  v ) )
6362ex 424 . . 3  |-  ( (
ph  /\  ( u  e.  J  /\  v  e.  J ) )  -> 
( ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) )
6463ralrimivva 2758 . 2  |-  ( ph  ->  A. u  e.  J  A. v  e.  J  ( ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) )
6526ralrimiva 2749 . . . 4  |-  ( ph  ->  A. k  e.  A  B  C_  X )
66 iunss 4092 . . . 4  |-  ( U_ k  e.  A  B  C_  X  <->  A. k  e.  A  B  C_  X )
6765, 66sylibr 204 . . 3  |-  ( ph  ->  U_ k  e.  A  B  C_  X )
68 connsub 17437 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U_ k  e.  A  B  C_  X )  ->  (
( Jt  U_ k  e.  A  B )  e.  Con  <->  A. u  e.  J  A. v  e.  J  (
( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) ) )
6924, 67, 68syl2anc 643 . 2  |-  ( ph  ->  ( ( Jt  U_ k  e.  A  B )  e.  Con  <->  A. u  e.  J  A. v  e.  J  ( ( ( u  i^i  U_ k  e.  A  B )  =/=  (/)  /\  (
v  i^i  U_ k  e.  A  B )  =/=  (/)  /\  ( u  i^i  v )  C_  ( X  \  U_ k  e.  A  B ) )  ->  -.  U_ k  e.  A  B  C_  (
u  u.  v ) ) ) )
7064, 69mpbird 224 1  |-  ( ph  ->  ( Jt  U_ k  e.  A  B )  e.  Con )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936   E.wex 1547    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667    \ cdif 3277    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   U_ciun 4053   ` cfv 5413  (class class class)co 6040   ↾t crest 13603  TopOnctopon 16914   Conccon 17427
This theorem is referenced by:  uncon  17445  concompcon  17448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-oadd 6687  df-er 6864  df-en 7069  df-fin 7072  df-fi 7374  df-rest 13605  df-topgen 13622  df-top 16918  df-bases 16920  df-topon 16921  df-cld 17038  df-con 17428
  Copyright terms: Public domain W3C validator