MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncld Structured version   Unicode version

Theorem iuncld 20052
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
iuncld  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  A  B  e.  ( Clsd `  J )
)
Distinct variable groups:    x, J    x, X    x, A
Allowed substitution hint:    B( x)

Proof of Theorem iuncld
StepHypRef Expression
1 difin 3711 . . . 4  |-  ( X 
\  ( X  i^i  |^|_
x  e.  A  ( X  \  B ) ) )  =  ( X  \  |^|_ x  e.  A  ( X  \  B ) )
2 iundif2 4364 . . . 4  |-  U_ x  e.  A  ( X  \  ( X  \  B
) )  =  ( X  \  |^|_ x  e.  A  ( X  \  B ) )
31, 2eqtr4i 2455 . . 3  |-  ( X 
\  ( X  i^i  |^|_
x  e.  A  ( X  \  B ) ) )  =  U_ x  e.  A  ( X  \  ( X  \  B ) )
4 clscld.1 . . . . . . . 8  |-  X  = 
U. J
54cldss 20036 . . . . . . 7  |-  ( B  e.  ( Clsd `  J
)  ->  B  C_  X
)
6 dfss4 3708 . . . . . . 7  |-  ( B 
C_  X  <->  ( X  \  ( X  \  B
) )  =  B )
75, 6sylib 200 . . . . . 6  |-  ( B  e.  ( Clsd `  J
)  ->  ( X  \  ( X  \  B
) )  =  B )
87ralimi 2819 . . . . 5  |-  ( A. x  e.  A  B  e.  ( Clsd `  J
)  ->  A. x  e.  A  ( X  \  ( X  \  B
) )  =  B )
983ad2ant3 1029 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  A. x  e.  A  ( X  \  ( X  \  B
) )  =  B )
10 iuneq2 4314 . . . 4  |-  ( A. x  e.  A  ( X  \  ( X  \  B ) )  =  B  ->  U_ x  e.  A  ( X  \ 
( X  \  B
) )  =  U_ x  e.  A  B
)
119, 10syl 17 . . 3  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  A  ( X  \  ( X  \  B
) )  =  U_ x  e.  A  B
)
123, 11syl5eq 2476 . 2  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  ( X  \  ( X  i^i  |^|_
x  e.  A  ( X  \  B ) ) )  =  U_ x  e.  A  B
)
13 simp1 1006 . . 3  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  J  e.  Top )
144cldopn 20038 . . . . 5  |-  ( B  e.  ( Clsd `  J
)  ->  ( X  \  B )  e.  J
)
1514ralimi 2819 . . . 4  |-  ( A. x  e.  A  B  e.  ( Clsd `  J
)  ->  A. x  e.  A  ( X  \  B )  e.  J
)
164riinopn 19930 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( X  \  B )  e.  J )  ->  ( X  i^i  |^|_ x  e.  A  ( X  \  B ) )  e.  J )
1715, 16syl3an3 1300 . . 3  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  ( X  i^i  |^|_ x  e.  A  ( X  \  B ) )  e.  J )
184opncld 20040 . . 3  |-  ( ( J  e.  Top  /\  ( X  i^i  |^|_ x  e.  A  ( X  \  B ) )  e.  J )  ->  ( X  \  ( X  i^i  |^|_
x  e.  A  ( X  \  B ) ) )  e.  (
Clsd `  J )
)
1913, 17, 18syl2anc 666 . 2  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  ( X  \  ( X  i^i  |^|_
x  e.  A  ( X  \  B ) ) )  e.  (
Clsd `  J )
)
2012, 19eqeltrrd 2512 1  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  A  B  e.  ( Clsd `  J )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 983    = wceq 1438    e. wcel 1869   A.wral 2776    \ cdif 3434    i^i cin 3436    C_ wss 3437   U.cuni 4217   U_ciun 4297   |^|_ciin 4298   ` cfv 5599   Fincfn 7575   Topctop 19909   Clsdccld 20023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-iin 4300  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-en 7576  df-dom 7577  df-fin 7579  df-top 19913  df-cld 20026
This theorem is referenced by:  unicld  20053  t1ficld  20335  mblfinlem1  31897  mblfinlem2  31898
  Copyright terms: Public domain W3C validator