MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunab Structured version   Unicode version

Theorem iunab 4364
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
Assertion
Ref Expression
iunab  |-  U_ x  e.  A  { y  |  ph }  =  {
y  |  E. x  e.  A  ph }
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem iunab
StepHypRef Expression
1 nfcv 2622 . . . 4  |-  F/_ y A
2 nfab1 2624 . . . 4  |-  F/_ y { y  |  ph }
31, 2nfiun 4346 . . 3  |-  F/_ y U_ x  e.  A  { y  |  ph }
4 nfab1 2624 . . 3  |-  F/_ y { y  |  E. x  e.  A  ph }
53, 4cleqf 2649 . 2  |-  ( U_ x  e.  A  {
y  |  ph }  =  { y  |  E. x  e.  A  ph }  <->  A. y ( y  e. 
U_ x  e.  A  { y  |  ph } 
<->  y  e.  { y  |  E. x  e.  A  ph } ) )
6 abid 2447 . . . 4  |-  ( y  e.  { y  | 
ph }  <->  ph )
76rexbii 2958 . . 3  |-  ( E. x  e.  A  y  e.  { y  | 
ph }  <->  E. x  e.  A  ph )
8 eliun 4323 . . 3  |-  ( y  e.  U_ x  e.  A  { y  | 
ph }  <->  E. x  e.  A  y  e.  { y  |  ph }
)
9 abid 2447 . . 3  |-  ( y  e.  { y  |  E. x  e.  A  ph }  <->  E. x  e.  A  ph )
107, 8, 93bitr4i 277 . 2  |-  ( y  e.  U_ x  e.  A  { y  | 
ph }  <->  y  e.  { y  |  E. x  e.  A  ph } )
115, 10mpgbir 1600 1  |-  U_ x  e.  A  { y  |  ph }  =  {
y  |  E. x  e.  A  ph }
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1374    e. wcel 1762   {cab 2445   E.wrex 2808   U_ciun 4318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ral 2812  df-rex 2813  df-v 3108  df-iun 4320
This theorem is referenced by:  iunrab  4365  iunid  4373  dfimafn2  5908  rabiun  29599  dfaimafn2  31673  rnfdmpr  31732
  Copyright terms: Public domain W3C validator