Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iun0 Structured version   Unicode version

Theorem iun0 4371
 Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iun0

Proof of Theorem iun0
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 noel 3774 . . . . . 6
21a1i 11 . . . . 5
32nrex 2898 . . . 4
4 eliun 4320 . . . 4
53, 4mtbir 299 . . 3
65, 12false 350 . 2
76eqriv 2439 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wceq 1383   wcel 1804  wrex 2794  c0 3770  ciun 4315 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ral 2798  df-rex 2799  df-v 3097  df-dif 3464  df-nul 3771  df-iun 4317 This theorem is referenced by:  iununi  4400  funiunfv  6145  om0r  7191  kmlem11  8543  ituniiun  8805  voliunlem1  21833  ofpreima2  27380  sigaclfu2  27994  measvunilem0  28057  measvuni  28058  cvmscld  28591  trpred0  29294
 Copyright terms: Public domain W3C validator