MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunitc Structured version   Visualization version   Unicode version

Theorem itunitc 8877
Description: The union of all union iterates creates the transitive closure; compare trcl 8238. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
Assertion
Ref Expression
itunitc  |-  ( TC
`  A )  = 
U. ran  ( U `  A )
Distinct variable group:    x, A, y
Allowed substitution hints:    U( x, y)

Proof of Theorem itunitc
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5888 . . . 4  |-  ( a  =  A  ->  ( TC `  a )  =  ( TC `  A
) )
2 fveq2 5888 . . . . . 6  |-  ( a  =  A  ->  ( U `  a )  =  ( U `  A ) )
32rneqd 5081 . . . . 5  |-  ( a  =  A  ->  ran  ( U `  a )  =  ran  ( U `
 A ) )
43unieqd 4222 . . . 4  |-  ( a  =  A  ->  U. ran  ( U `  a )  =  U. ran  ( U `  A )
)
51, 4eqeq12d 2477 . . 3  |-  ( a  =  A  ->  (
( TC `  a
)  =  U. ran  ( U `  a )  <-> 
( TC `  A
)  =  U. ran  ( U `  A ) ) )
6 vex 3060 . . . . . . 7  |-  a  e. 
_V
7 ituni.u . . . . . . . 8  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
87ituni0 8874 . . . . . . 7  |-  ( a  e.  _V  ->  (
( U `  a
) `  (/) )  =  a )
96, 8ax-mp 5 . . . . . 6  |-  ( ( U `  a ) `
 (/) )  =  a
10 fvssunirn 5911 . . . . . 6  |-  ( ( U `  a ) `
 (/) )  C_  U. ran  ( U `  a )
119, 10eqsstr3i 3475 . . . . 5  |-  a  C_  U.
ran  ( U `  a )
12 dftr3 4515 . . . . . 6  |-  ( Tr 
U. ran  ( U `  a )  <->  A. b  e.  U. ran  ( U `
 a ) b 
C_  U. ran  ( U `
 a ) )
137itunifn 8873 . . . . . . . 8  |-  ( a  e.  _V  ->  ( U `  a )  Fn  om )
14 fnunirn 6183 . . . . . . . 8  |-  ( ( U `  a )  Fn  om  ->  (
b  e.  U. ran  ( U `  a )  <->  E. c  e.  om  b  e.  ( ( U `  a ) `  c ) ) )
156, 13, 14mp2b 10 . . . . . . 7  |-  ( b  e.  U. ran  ( U `  a )  <->  E. c  e.  om  b  e.  ( ( U `  a ) `  c
) )
16 elssuni 4241 . . . . . . . . 9  |-  ( b  e.  ( ( U `
 a ) `  c )  ->  b  C_ 
U. ( ( U `
 a ) `  c ) )
177itunisuc 8875 . . . . . . . . . 10  |-  ( ( U `  a ) `
 suc  c )  =  U. ( ( U `
 a ) `  c )
18 fvssunirn 5911 . . . . . . . . . 10  |-  ( ( U `  a ) `
 suc  c )  C_ 
U. ran  ( U `  a )
1917, 18eqsstr3i 3475 . . . . . . . . 9  |-  U. (
( U `  a
) `  c )  C_ 
U. ran  ( U `  a )
2016, 19syl6ss 3456 . . . . . . . 8  |-  ( b  e.  ( ( U `
 a ) `  c )  ->  b  C_ 
U. ran  ( U `  a ) )
2120rexlimivw 2888 . . . . . . 7  |-  ( E. c  e.  om  b  e.  ( ( U `  a ) `  c
)  ->  b  C_  U.
ran  ( U `  a ) )
2215, 21sylbi 200 . . . . . 6  |-  ( b  e.  U. ran  ( U `  a )  ->  b  C_  U. ran  ( U `  a )
)
2312, 22mprgbir 2764 . . . . 5  |-  Tr  U. ran  ( U `  a
)
24 tcmin 8251 . . . . . 6  |-  ( a  e.  _V  ->  (
( a  C_  U. ran  ( U `  a )  /\  Tr  U. ran  ( U `  a ) )  ->  ( TC `  a )  C_  U. ran  ( U `  a ) ) )
256, 24ax-mp 5 . . . . 5  |-  ( ( a  C_  U. ran  ( U `  a )  /\  Tr  U. ran  ( U `  a )
)  ->  ( TC `  a )  C_  U. ran  ( U `  a ) )
2611, 23, 25mp2an 683 . . . 4  |-  ( TC
`  a )  C_  U.
ran  ( U `  a )
27 unissb 4243 . . . . 5  |-  ( U. ran  ( U `  a
)  C_  ( TC `  a )  <->  A. b  e.  ran  ( U `  a ) b  C_  ( TC `  a ) )
28 fvelrnb 5935 . . . . . . 7  |-  ( ( U `  a )  Fn  om  ->  (
b  e.  ran  ( U `  a )  <->  E. c  e.  om  (
( U `  a
) `  c )  =  b ) )
296, 13, 28mp2b 10 . . . . . 6  |-  ( b  e.  ran  ( U `
 a )  <->  E. c  e.  om  ( ( U `
 a ) `  c )  =  b )
307itunitc1 8876 . . . . . . . . 9  |-  ( ( U `  a ) `
 c )  C_  ( TC `  a )
3130a1i 11 . . . . . . . 8  |-  ( c  e.  om  ->  (
( U `  a
) `  c )  C_  ( TC `  a
) )
32 sseq1 3465 . . . . . . . 8  |-  ( ( ( U `  a
) `  c )  =  b  ->  ( ( ( U `  a
) `  c )  C_  ( TC `  a
)  <->  b  C_  ( TC `  a ) ) )
3331, 32syl5ibcom 228 . . . . . . 7  |-  ( c  e.  om  ->  (
( ( U `  a ) `  c
)  =  b  -> 
b  C_  ( TC `  a ) ) )
3433rexlimiv 2885 . . . . . 6  |-  ( E. c  e.  om  (
( U `  a
) `  c )  =  b  ->  b  C_  ( TC `  a ) )
3529, 34sylbi 200 . . . . 5  |-  ( b  e.  ran  ( U `
 a )  -> 
b  C_  ( TC `  a ) )
3627, 35mprgbir 2764 . . . 4  |-  U. ran  ( U `  a ) 
C_  ( TC `  a )
3726, 36eqssi 3460 . . 3  |-  ( TC
`  a )  = 
U. ran  ( U `  a )
385, 37vtoclg 3119 . 2  |-  ( A  e.  _V  ->  ( TC `  A )  = 
U. ran  ( U `  A ) )
39 rn0 5105 . . . . 5  |-  ran  (/)  =  (/)
4039unieqi 4221 . . . 4  |-  U. ran  (/)  =  U. (/)
41 uni0 4239 . . . 4  |-  U. (/)  =  (/)
4240, 41eqtr2i 2485 . . 3  |-  (/)  =  U. ran  (/)
43 fvprc 5882 . . 3  |-  ( -.  A  e.  _V  ->  ( TC `  A )  =  (/) )
44 fvprc 5882 . . . . 5  |-  ( -.  A  e.  _V  ->  ( U `  A )  =  (/) )
4544rneqd 5081 . . . 4  |-  ( -.  A  e.  _V  ->  ran  ( U `  A
)  =  ran  (/) )
4645unieqd 4222 . . 3  |-  ( -.  A  e.  _V  ->  U.
ran  ( U `  A )  =  U. ran  (/) )
4742, 43, 463eqtr4a 2522 . 2  |-  ( -.  A  e.  _V  ->  ( TC `  A )  =  U. ran  ( U `  A )
)
4838, 47pm2.61i 169 1  |-  ( TC
`  A )  = 
U. ran  ( U `  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455    e. wcel 1898   E.wrex 2750   _Vcvv 3057    C_ wss 3416   (/)c0 3743   U.cuni 4212    |-> cmpt 4475   Tr wtr 4511   ran crn 4854    |` cres 4855   suc csuc 5444    Fn wfn 5596   ` cfv 5601   omcom 6719   reccrdg 7153   TCctc 8246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-inf2 8172
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-om 6720  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-tc 8247
This theorem is referenced by:  hsmexlem5  8886
  Copyright terms: Public domain W3C validator