MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm2 Structured version   Unicode version

Theorem itgulm2 21833
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm2.z  |-  Z  =  ( ZZ>= `  M )
itgulm2.m  |-  ( ph  ->  M  e.  ZZ )
itgulm2.c  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A )  e.  ( S
-cn-> CC ) )
itgulm2.l  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A )  e.  L^1 )
itgulm2.u  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B ) )
itgulm2.s  |-  ( ph  ->  ( vol `  S
)  e.  RR )
Assertion
Ref Expression
itgulm2  |-  ( ph  ->  ( ( x  e.  S  |->  B )  e.  L^1  /\  (
k  e.  Z  |->  S. S A  _d x )  ~~>  S. S B  _d x ) )
Distinct variable groups:    x, k, ph    S, k, x    k, Z, x
Allowed substitution hints:    A( x, k)    B( x, k)    M( x, k)

Proof of Theorem itgulm2
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm2.z . . 3  |-  Z  =  ( ZZ>= `  M )
2 itgulm2.m . . 3  |-  ( ph  ->  M  e.  ZZ )
3 itgulm2.l . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A )  e.  L^1 )
4 eqid 2441 . . . 4  |-  ( k  e.  Z  |->  ( x  e.  S  |->  A ) )  =  ( k  e.  Z  |->  ( x  e.  S  |->  A ) )
53, 4fmptd 5864 . . 3  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) : Z --> L^1 )
6 itgulm2.u . . 3  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B ) )
7 itgulm2.s . . 3  |-  ( ph  ->  ( vol `  S
)  e.  RR )
81, 2, 5, 6, 7iblulm 21831 . 2  |-  ( ph  ->  ( x  e.  S  |->  B )  e.  L^1 )
91, 2, 5, 6, 7itgulm 21832 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `  z
)  _d z )  ~~>  S. S ( ( x  e.  S  |->  B ) `  z )  _d z )
10 nfcv 2577 . . . . . 6  |-  F/_ k S
11 nffvmpt1 5696 . . . . . . 7  |-  F/_ k
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n )
12 nfcv 2577 . . . . . . 7  |-  F/_ k
z
1311, 12nffv 5695 . . . . . 6  |-  F/_ k
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 z )
1410, 13nfitg 21211 . . . . 5  |-  F/_ k S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n
) `  z )  _d z
15 nfcv 2577 . . . . 5  |-  F/_ n S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x
16 fveq2 5688 . . . . . . 7  |-  ( z  =  x  ->  (
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n ) `  z )  =  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n ) `  x ) )
17 nfcv 2577 . . . . . . . . . 10  |-  F/_ x Z
18 nfmpt1 4378 . . . . . . . . . 10  |-  F/_ x
( x  e.  S  |->  A )
1917, 18nfmpt 4377 . . . . . . . . 9  |-  F/_ x
( k  e.  Z  |->  ( x  e.  S  |->  A ) )
20 nfcv 2577 . . . . . . . . 9  |-  F/_ x n
2119, 20nffv 5695 . . . . . . . 8  |-  F/_ x
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n )
22 nfcv 2577 . . . . . . . 8  |-  F/_ x
z
2321, 22nffv 5695 . . . . . . 7  |-  F/_ x
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 z )
24 nfcv 2577 . . . . . . 7  |-  F/_ z
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 x )
2516, 23, 24cbvitg 21212 . . . . . 6  |-  S. S
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 z )  _d z  =  S. S
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 x )  _d x
26 fveq2 5688 . . . . . . . . 9  |-  ( n  =  k  ->  (
( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n )  =  ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k ) )
2726fveq1d 5690 . . . . . . . 8  |-  ( n  =  k  ->  (
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n ) `  x )  =  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 k ) `  x ) )
2827adantr 462 . . . . . . 7  |-  ( ( n  =  k  /\  x  e.  S )  ->  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 x )  =  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k ) `
 x ) )
2928itgeq2dv 21218 . . . . . 6  |-  ( n  =  k  ->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n
) `  x )  _d x  =  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x )
3025, 29syl5eq 2485 . . . . 5  |-  ( n  =  k  ->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n
) `  z )  _d z  =  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x )
3114, 15, 30cbvmpt 4379 . . . 4  |-  ( n  e.  Z  |->  S. S
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 z )  _d z )  =  ( k  e.  Z  |->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x )
32 simplr 749 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  k  e.  Z )
33 ulmscl 21803 . . . . . . . . . . 11  |-  ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B )  ->  S  e.  _V )
34 mptexg 5944 . . . . . . . . . . 11  |-  ( S  e.  _V  ->  (
x  e.  S  |->  A )  e.  _V )
356, 33, 343syl 20 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  S  |->  A )  e.  _V )
3635ad2antrr 720 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
x  e.  S  |->  A )  e.  _V )
374fvmpt2 5778 . . . . . . . . 9  |-  ( ( k  e.  Z  /\  ( x  e.  S  |->  A )  e.  _V )  ->  ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k )  =  ( x  e.  S  |->  A ) )
3832, 36, 37syl2anc 656 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k )  =  ( x  e.  S  |->  A ) )
3938fveq1d 5690 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 k ) `  x )  =  ( ( x  e.  S  |->  A ) `  x
) )
40 simpr 458 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  x  e.  S )
4135ralrimivw 2798 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  Z  ( x  e.  S  |->  A )  e.  _V )
424fnmpt 5534 . . . . . . . . . . . . . . 15  |-  ( A. k  e.  Z  (
x  e.  S  |->  A )  e.  _V  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) )  Fn  Z
)
4341, 42syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) )  Fn  Z )
44 ulmf2 21808 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) )  Fn  Z  /\  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B ) )  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) : Z --> ( CC 
^m  S ) )
4543, 6, 44syl2anc 656 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) : Z --> ( CC  ^m  S ) )
464fmpt 5861 . . . . . . . . . . . . 13  |-  ( A. k  e.  Z  (
x  e.  S  |->  A )  e.  ( CC 
^m  S )  <->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) : Z --> ( CC 
^m  S ) )
4745, 46sylibr 212 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  Z  ( x  e.  S  |->  A )  e.  ( CC  ^m  S ) )
4847r19.21bi 2812 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A )  e.  ( CC 
^m  S ) )
49 elmapi 7230 . . . . . . . . . . 11  |-  ( ( x  e.  S  |->  A )  e.  ( CC 
^m  S )  -> 
( x  e.  S  |->  A ) : S --> CC )
5048, 49syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A ) : S --> CC )
51 eqid 2441 . . . . . . . . . . 11  |-  ( x  e.  S  |->  A )  =  ( x  e.  S  |->  A )
5251fmpt 5861 . . . . . . . . . 10  |-  ( A. x  e.  S  A  e.  CC  <->  ( x  e.  S  |->  A ) : S --> CC )
5350, 52sylibr 212 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  A. x  e.  S  A  e.  CC )
5453r19.21bi 2812 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  A  e.  CC )
5551fvmpt2 5778 . . . . . . . 8  |-  ( ( x  e.  S  /\  A  e.  CC )  ->  ( ( x  e.  S  |->  A ) `  x )  =  A )
5640, 54, 55syl2anc 656 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( x  e.  S  |->  A ) `  x
)  =  A )
5739, 56eqtrd 2473 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 k ) `  x )  =  A )
5857itgeq2dv 21218 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x  =  S. S A  _d x
)
5958mpteq2dva 4375 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k ) `  x
)  _d x )  =  ( k  e.  Z  |->  S. S A  _d x ) )
6031, 59syl5eq 2485 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `  z
)  _d z )  =  ( k  e.  Z  |->  S. S A  _d x ) )
61 fveq2 5688 . . . . 5  |-  ( z  =  x  ->  (
( x  e.  S  |->  B ) `  z
)  =  ( ( x  e.  S  |->  B ) `  x ) )
62 nffvmpt1 5696 . . . . 5  |-  F/_ x
( ( x  e.  S  |->  B ) `  z )
63 nfcv 2577 . . . . 5  |-  F/_ z
( ( x  e.  S  |->  B ) `  x )
6461, 62, 63cbvitg 21212 . . . 4  |-  S. S
( ( x  e.  S  |->  B ) `  z )  _d z  =  S. S ( ( x  e.  S  |->  B ) `  x
)  _d x
65 simpr 458 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  S )
66 ulmcl 21805 . . . . . . . . 9  |-  ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B )  ->  ( x  e.  S  |->  B ) : S --> CC )
676, 66syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  S  |->  B ) : S --> CC )
68 eqid 2441 . . . . . . . . 9  |-  ( x  e.  S  |->  B )  =  ( x  e.  S  |->  B )
6968fmpt 5861 . . . . . . . 8  |-  ( A. x  e.  S  B  e.  CC  <->  ( x  e.  S  |->  B ) : S --> CC )
7067, 69sylibr 212 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  B  e.  CC )
7170r19.21bi 2812 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  CC )
7268fvmpt2 5778 . . . . . 6  |-  ( ( x  e.  S  /\  B  e.  CC )  ->  ( ( x  e.  S  |->  B ) `  x )  =  B )
7365, 71, 72syl2anc 656 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  (
( x  e.  S  |->  B ) `  x
)  =  B )
7473itgeq2dv 21218 . . . 4  |-  ( ph  ->  S. S ( ( x  e.  S  |->  B ) `  x )  _d x  =  S. S B  _d x )
7564, 74syl5eq 2485 . . 3  |-  ( ph  ->  S. S ( ( x  e.  S  |->  B ) `  z )  _d z  =  S. S B  _d x )
769, 60, 753brtr3d 4318 . 2  |-  ( ph  ->  ( k  e.  Z  |->  S. S A  _d x )  ~~>  S. S B  _d x )
778, 76jca 529 1  |-  ( ph  ->  ( ( x  e.  S  |->  B )  e.  L^1  /\  (
k  e.  Z  |->  S. S A  _d x )  ~~>  S. S B  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   _Vcvv 2970   class class class wbr 4289    e. cmpt 4347    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090    ^m cmap 7210   CCcc 9276   RRcr 9277   ZZcz 10642   ZZ>=cuz 10857    ~~> cli 12958   -cn->ccncf 20411   volcvol 20906   L^1cibl 21056   S.citg 21057   ~~> uculm 21800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cc 8600  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-ofr 6320  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-sum 13160  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cn 18790  df-cnp 18791  df-cmp 18949  df-tx 19094  df-hmeo 19287  df-xms 19854  df-ms 19855  df-tms 19856  df-cncf 20413  df-ovol 20907  df-vol 20908  df-mbf 21058  df-itg1 21059  df-itg2 21060  df-ibl 21061  df-itg 21062  df-0p 21107  df-ulm 21801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator