MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm2 Unicode version

Theorem itgulm2 20278
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm2.z  |-  Z  =  ( ZZ>= `  M )
itgulm2.m  |-  ( ph  ->  M  e.  ZZ )
itgulm2.c  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A )  e.  ( S
-cn-> CC ) )
itgulm2.l  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A )  e.  L ^1 )
itgulm2.u  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B ) )
itgulm2.s  |-  ( ph  ->  ( vol `  S
)  e.  RR )
Assertion
Ref Expression
itgulm2  |-  ( ph  ->  ( ( x  e.  S  |->  B )  e.  L ^1  /\  (
k  e.  Z  |->  S. S A  _d x )  ~~>  S. S B  _d x ) )
Distinct variable groups:    x, k, ph    S, k, x    k, Z, x
Allowed substitution hints:    A( x, k)    B( x, k)    M( x, k)

Proof of Theorem itgulm2
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm2.z . . 3  |-  Z  =  ( ZZ>= `  M )
2 itgulm2.m . . 3  |-  ( ph  ->  M  e.  ZZ )
3 itgulm2.l . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A )  e.  L ^1 )
4 eqid 2404 . . . 4  |-  ( k  e.  Z  |->  ( x  e.  S  |->  A ) )  =  ( k  e.  Z  |->  ( x  e.  S  |->  A ) )
53, 4fmptd 5852 . . 3  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) : Z --> L ^1 )
6 itgulm2.u . . 3  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B ) )
7 itgulm2.s . . 3  |-  ( ph  ->  ( vol `  S
)  e.  RR )
81, 2, 5, 6, 7iblulm 20276 . 2  |-  ( ph  ->  ( x  e.  S  |->  B )  e.  L ^1 )
91, 2, 5, 6, 7itgulm 20277 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `  z
)  _d z )  ~~>  S. S ( ( x  e.  S  |->  B ) `  z )  _d z )
10 nfcv 2540 . . . . . 6  |-  F/_ k S
11 nffvmpt1 5695 . . . . . . 7  |-  F/_ k
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n )
12 nfcv 2540 . . . . . . 7  |-  F/_ k
z
1311, 12nffv 5694 . . . . . 6  |-  F/_ k
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 z )
1410, 13nfitg 19619 . . . . 5  |-  F/_ k S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n
) `  z )  _d z
15 nfcv 2540 . . . . 5  |-  F/_ n S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x
16 fveq2 5687 . . . . . . 7  |-  ( z  =  x  ->  (
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n ) `  z )  =  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n ) `  x ) )
17 nfcv 2540 . . . . . . . . . 10  |-  F/_ x Z
18 nfmpt1 4258 . . . . . . . . . 10  |-  F/_ x
( x  e.  S  |->  A )
1917, 18nfmpt 4257 . . . . . . . . 9  |-  F/_ x
( k  e.  Z  |->  ( x  e.  S  |->  A ) )
20 nfcv 2540 . . . . . . . . 9  |-  F/_ x n
2119, 20nffv 5694 . . . . . . . 8  |-  F/_ x
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n )
22 nfcv 2540 . . . . . . . 8  |-  F/_ x
z
2321, 22nffv 5694 . . . . . . 7  |-  F/_ x
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 z )
24 nfcv 2540 . . . . . . 7  |-  F/_ z
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 x )
2516, 23, 24cbvitg 19620 . . . . . 6  |-  S. S
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 z )  _d z  =  S. S
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 x )  _d x
26 fveq2 5687 . . . . . . . . 9  |-  ( n  =  k  ->  (
( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n )  =  ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k ) )
2726fveq1d 5689 . . . . . . . 8  |-  ( n  =  k  ->  (
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 n ) `  x )  =  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 k ) `  x ) )
2827adantr 452 . . . . . . 7  |-  ( ( n  =  k  /\  x  e.  S )  ->  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 x )  =  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k ) `
 x ) )
2928itgeq2dv 19626 . . . . . 6  |-  ( n  =  k  ->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n
) `  x )  _d x  =  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x )
3025, 29syl5eq 2448 . . . . 5  |-  ( n  =  k  ->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n
) `  z )  _d z  =  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x )
3114, 15, 30cbvmpt 4259 . . . 4  |-  ( n  e.  Z  |->  S. S
( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `
 z )  _d z )  =  ( k  e.  Z  |->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x )
32 simplr 732 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  k  e.  Z )
33 ulmscl 20248 . . . . . . . . . . 11  |-  ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B )  ->  S  e.  _V )
34 mptexg 5924 . . . . . . . . . . 11  |-  ( S  e.  _V  ->  (
x  e.  S  |->  A )  e.  _V )
356, 33, 343syl 19 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  S  |->  A )  e.  _V )
3635ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
x  e.  S  |->  A )  e.  _V )
374fvmpt2 5771 . . . . . . . . 9  |-  ( ( k  e.  Z  /\  ( x  e.  S  |->  A )  e.  _V )  ->  ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k )  =  ( x  e.  S  |->  A ) )
3832, 36, 37syl2anc 643 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k )  =  ( x  e.  S  |->  A ) )
3938fveq1d 5689 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 k ) `  x )  =  ( ( x  e.  S  |->  A ) `  x
) )
40 simpr 448 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  x  e.  S )
4135ralrimivw 2750 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  Z  ( x  e.  S  |->  A )  e.  _V )
424fnmpt 5530 . . . . . . . . . . . . . . 15  |-  ( A. k  e.  Z  (
x  e.  S  |->  A )  e.  _V  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) )  Fn  Z
)
4341, 42syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) )  Fn  Z )
44 ulmf2 20253 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) )  Fn  Z  /\  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B ) )  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) : Z --> ( CC 
^m  S ) )
4543, 6, 44syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) : Z --> ( CC  ^m  S ) )
464fmpt 5849 . . . . . . . . . . . . 13  |-  ( A. k  e.  Z  (
x  e.  S  |->  A )  e.  ( CC 
^m  S )  <->  ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) : Z --> ( CC 
^m  S ) )
4745, 46sylibr 204 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  Z  ( x  e.  S  |->  A )  e.  ( CC  ^m  S ) )
4847r19.21bi 2764 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A )  e.  ( CC 
^m  S ) )
49 elmapi 6997 . . . . . . . . . . 11  |-  ( ( x  e.  S  |->  A )  e.  ( CC 
^m  S )  -> 
( x  e.  S  |->  A ) : S --> CC )
5048, 49syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  (
x  e.  S  |->  A ) : S --> CC )
51 eqid 2404 . . . . . . . . . . 11  |-  ( x  e.  S  |->  A )  =  ( x  e.  S  |->  A )
5251fmpt 5849 . . . . . . . . . 10  |-  ( A. x  e.  S  A  e.  CC  <->  ( x  e.  S  |->  A ) : S --> CC )
5350, 52sylibr 204 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  A. x  e.  S  A  e.  CC )
5453r19.21bi 2764 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  A  e.  CC )
5551fvmpt2 5771 . . . . . . . 8  |-  ( ( x  e.  S  /\  A  e.  CC )  ->  ( ( x  e.  S  |->  A ) `  x )  =  A )
5640, 54, 55syl2anc 643 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( x  e.  S  |->  A ) `  x
)  =  A )
5739, 56eqtrd 2436 . . . . . 6  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `
 k ) `  x )  =  A )
5857itgeq2dv 19626 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k
) `  x )  _d x  =  S. S A  _d x
)
5958mpteq2dva 4255 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  k ) `  x
)  _d x )  =  ( k  e.  Z  |->  S. S A  _d x ) )
6031, 59syl5eq 2448 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  S. S ( ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) `  n ) `  z
)  _d z )  =  ( k  e.  Z  |->  S. S A  _d x ) )
61 fveq2 5687 . . . . 5  |-  ( z  =  x  ->  (
( x  e.  S  |->  B ) `  z
)  =  ( ( x  e.  S  |->  B ) `  x ) )
62 nffvmpt1 5695 . . . . 5  |-  F/_ x
( ( x  e.  S  |->  B ) `  z )
63 nfcv 2540 . . . . 5  |-  F/_ z
( ( x  e.  S  |->  B ) `  x )
6461, 62, 63cbvitg 19620 . . . 4  |-  S. S
( ( x  e.  S  |->  B ) `  z )  _d z  =  S. S ( ( x  e.  S  |->  B ) `  x
)  _d x
65 simpr 448 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  S )
66 ulmcl 20250 . . . . . . . . 9  |-  ( ( k  e.  Z  |->  ( x  e.  S  |->  A ) ) ( ~~> u `  S ) ( x  e.  S  |->  B )  ->  ( x  e.  S  |->  B ) : S --> CC )
676, 66syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  S  |->  B ) : S --> CC )
68 eqid 2404 . . . . . . . . 9  |-  ( x  e.  S  |->  B )  =  ( x  e.  S  |->  B )
6968fmpt 5849 . . . . . . . 8  |-  ( A. x  e.  S  B  e.  CC  <->  ( x  e.  S  |->  B ) : S --> CC )
7067, 69sylibr 204 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  B  e.  CC )
7170r19.21bi 2764 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  CC )
7268fvmpt2 5771 . . . . . 6  |-  ( ( x  e.  S  /\  B  e.  CC )  ->  ( ( x  e.  S  |->  B ) `  x )  =  B )
7365, 71, 72syl2anc 643 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  (
( x  e.  S  |->  B ) `  x
)  =  B )
7473itgeq2dv 19626 . . . 4  |-  ( ph  ->  S. S ( ( x  e.  S  |->  B ) `  x )  _d x  =  S. S B  _d x )
7564, 74syl5eq 2448 . . 3  |-  ( ph  ->  S. S ( ( x  e.  S  |->  B ) `  z )  _d z  =  S. S B  _d x )
769, 60, 753brtr3d 4201 . 2  |-  ( ph  ->  ( k  e.  Z  |->  S. S A  _d x )  ~~>  S. S B  _d x )
778, 76jca 519 1  |-  ( ph  ->  ( ( x  e.  S  |->  B )  e.  L ^1  /\  (
k  e.  Z  |->  S. S A  _d x )  ~~>  S. S B  _d x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916   class class class wbr 4172    e. cmpt 4226    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    ^m cmap 6977   CCcc 8944   RRcr 8945   ZZcz 10238   ZZ>=cuz 10444    ~~> cli 12233   -cn->ccncf 18859   volcvol 19313   L ^1cibl 19462   S.citg 19463   ~~> uculm 20245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cc 8271  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ofr 6265  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cn 17245  df-cnp 17246  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-ovol 19314  df-vol 19315  df-mbf 19465  df-itg1 19466  df-itg2 19467  df-ibl 19468  df-itg 19469  df-0p 19515  df-ulm 20246
  Copyright terms: Public domain W3C validator