MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm Structured version   Unicode version

Theorem itgulm 21876
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm.z  |-  Z  =  ( ZZ>= `  M )
itgulm.m  |-  ( ph  ->  M  e.  ZZ )
itgulm.f  |-  ( ph  ->  F : Z --> L^1 )
itgulm.u  |-  ( ph  ->  F ( ~~> u `  S ) G )
itgulm.s  |-  ( ph  ->  ( vol `  S
)  e.  RR )
Assertion
Ref Expression
itgulm  |-  ( ph  ->  ( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x )  ~~>  S. S
( G `  x
)  _d x )
Distinct variable groups:    x, k, F    k, G, x    ph, k, x    k, M, x    S, k, x    k, Z, x

Proof of Theorem itgulm
Dummy variables  j  n  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm.z . . . . 5  |-  Z  =  ( ZZ>= `  M )
2 itgulm.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
32adantr 465 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  M  e.  ZZ )
4 itgulm.f . . . . . . . 8  |-  ( ph  ->  F : Z --> L^1 )
5 ffn 5562 . . . . . . . 8  |-  ( F : Z --> L^1 
->  F  Fn  Z
)
64, 5syl 16 . . . . . . 7  |-  ( ph  ->  F  Fn  Z )
7 itgulm.u . . . . . . 7  |-  ( ph  ->  F ( ~~> u `  S ) G )
8 ulmf2 21852 . . . . . . 7  |-  ( ( F  Fn  Z  /\  F ( ~~> u `  S ) G )  ->  F : Z --> ( CC  ^m  S ) )
96, 7, 8syl2anc 661 . . . . . 6  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
109adantr 465 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  F : Z
--> ( CC  ^m  S
) )
11 eqidd 2444 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  z  e.  S )
)  ->  ( ( F `  n ) `  z )  =  ( ( F `  n
) `  z )
)
12 eqidd 2444 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  z  e.  S )  ->  ( G `  z )  =  ( G `  z ) )
137adantr 465 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  F ( ~~> u `  S ) G )
14 simpr 461 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  r  e.  RR+ )
15 itgulm.s . . . . . . . 8  |-  ( ph  ->  ( vol `  S
)  e.  RR )
1615adantr 465 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( vol `  S )  e.  RR )
17 ulmcl 21849 . . . . . . . . . . . 12  |-  ( F ( ~~> u `  S
) G  ->  G : S --> CC )
18 fdm 5566 . . . . . . . . . . . 12  |-  ( G : S --> CC  ->  dom 
G  =  S )
197, 17, 183syl 20 . . . . . . . . . . 11  |-  ( ph  ->  dom  G  =  S )
201, 2, 4, 7, 15iblulm 21875 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  L^1 )
21 iblmbf 21248 . . . . . . . . . . . 12  |-  ( G  e.  L^1  ->  G  e. MblFn )
22 mbfdm 21109 . . . . . . . . . . . 12  |-  ( G  e. MblFn  ->  dom  G  e.  dom  vol )
2320, 21, 223syl 20 . . . . . . . . . . 11  |-  ( ph  ->  dom  G  e.  dom  vol )
2419, 23eqeltrrd 2518 . . . . . . . . . 10  |-  ( ph  ->  S  e.  dom  vol )
25 mblss 21017 . . . . . . . . . 10  |-  ( S  e.  dom  vol  ->  S 
C_  RR )
26 ovolge0 20967 . . . . . . . . . 10  |-  ( S 
C_  RR  ->  0  <_ 
( vol* `  S ) )
2724, 25, 263syl 20 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( vol* `  S ) )
28 mblvol 21016 . . . . . . . . . 10  |-  ( S  e.  dom  vol  ->  ( vol `  S )  =  ( vol* `  S ) )
2924, 28syl 16 . . . . . . . . 9  |-  ( ph  ->  ( vol `  S
)  =  ( vol* `  S )
)
3027, 29breqtrrd 4321 . . . . . . . 8  |-  ( ph  ->  0  <_  ( vol `  S ) )
3130adantr 465 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  0  <_  ( vol `  S ) )
3216, 31ge0p1rpd 11056 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( vol `  S )  +  1 )  e.  RR+ )
3314, 32rpdivcld 11047 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( r  /  ( ( vol `  S )  +  1 ) )  e.  RR+ )
341, 3, 10, 11, 12, 13, 33ulmi 21854 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. j  e.  Z  A. n  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) )
351uztrn2 10881 . . . . . . . 8  |-  ( ( j  e.  Z  /\  n  e.  ( ZZ>= `  j ) )  ->  n  e.  Z )
369ffvelrnda 5846 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  ( CC  ^m  S
) )
37 elmapi 7237 . . . . . . . . . . . . . . . 16  |-  ( ( F `  n )  e.  ( CC  ^m  S )  ->  ( F `  n ) : S --> CC )
3836, 37syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n ) : S --> CC )
3938ffvelrnda 5846 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  Z )  /\  x  e.  S )  ->  (
( F `  n
) `  x )  e.  CC )
4039adantllr 718 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  n  e.  Z )  /\  x  e.  S
)  ->  ( ( F `  n ) `  x )  e.  CC )
4140adantlrr 720 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( ( F `  n ) `  x
)  e.  CC )
4238feqmptd 5747 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  =  ( x  e.  S  |->  ( ( F `
 n ) `  x ) ) )
434ffvelrnda 5846 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  L^1 )
4442, 43eqeltrrd 2518 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  S  |->  ( ( F `  n
) `  x )
)  e.  L^1 )
4544ad2ant2r 746 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( ( F `  n ) `  x
) )  e.  L^1 )
467, 17syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G : S --> CC )
4746ffvelrnda 5846 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  S )  ->  ( G `  x )  e.  CC )
4847adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  x  e.  S )  ->  ( G `  x )  e.  CC )
4948adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( G `  x
)  e.  CC )
5046feqmptd 5747 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  =  ( x  e.  S  |->  ( G `
 x ) ) )
5150, 20eqeltrrd 2518 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  S  |->  ( G `  x
) )  e.  L^1 )
5251ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( G `  x
) )  e.  L^1 )
5341, 45, 49, 52itgsub 21306 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x  =  ( S. S ( ( F `  n
) `  x )  _d x  -  S. S ( G `  x )  _d x ) )
5453fveq2d 5698 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x )  =  ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) ) )
5541, 49subcld 9722 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( ( ( F `
 n ) `  x )  -  ( G `  x )
)  e.  CC )
5641, 45, 49, 52iblsub 21302 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( ( ( F `
 n ) `  x )  -  ( G `  x )
) )  e.  L^1 )
5755, 56itgcl 21264 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x  e.  CC )
5857abscld 12925 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x )  e.  RR )
5955abscld 12925 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  e.  RR )
6055, 56iblabs 21309 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) ) )  e.  L^1 )
6159, 60itgrecl 21278 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  _d x  e.  RR )
62 rpre 11000 . . . . . . . . . . . 12  |-  ( r  e.  RR+  ->  r  e.  RR )
6362ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
r  e.  RR )
6455, 56itgabs 21315 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x )  <_  S. S ( abs `  ( ( ( F `  n
) `  x )  -  ( G `  x ) ) )  _d x )
6533adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  /  (
( vol `  S
)  +  1 ) )  e.  RR+ )
6665rpred 11030 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  /  (
( vol `  S
)  +  1 ) )  e.  RR )
6715ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( vol `  S
)  e.  RR )
6866, 67remulcld 9417 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( r  / 
( ( vol `  S
)  +  1 ) )  x.  ( vol `  S ) )  e.  RR )
69 fconstmpt 4885 . . . . . . . . . . . . . . 15  |-  ( S  X.  { ( r  /  ( ( vol `  S )  +  1 ) ) } )  =  ( x  e.  S  |->  ( r  / 
( ( vol `  S
)  +  1 ) ) )
7024ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S  e.  dom  vol )
7165rpcnd 11032 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  /  (
( vol `  S
)  +  1 ) )  e.  CC )
72 iblconst 21298 . . . . . . . . . . . . . . . 16  |-  ( ( S  e.  dom  vol  /\  ( vol `  S
)  e.  RR  /\  ( r  /  (
( vol `  S
)  +  1 ) )  e.  CC )  ->  ( S  X.  { ( r  / 
( ( vol `  S
)  +  1 ) ) } )  e.  L^1 )
7370, 67, 71, 72syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( S  X.  {
( r  /  (
( vol `  S
)  +  1 ) ) } )  e.  L^1 )
7469, 73syl5eqelr 2528 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( r  /  (
( vol `  S
)  +  1 ) ) )  e.  L^1 )
7566adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( r  /  (
( vol `  S
)  +  1 ) )  e.  RR )
76 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) )
77 fveq2 5694 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  x  ->  (
( F `  n
) `  z )  =  ( ( F `
 n ) `  x ) )
78 fveq2 5694 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  x  ->  ( G `  z )  =  ( G `  x ) )
7977, 78oveq12d 6112 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  x  ->  (
( ( F `  n ) `  z
)  -  ( G `
 z ) )  =  ( ( ( F `  n ) `
 x )  -  ( G `  x ) ) )
8079fveq2d 5698 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  x  ->  ( abs `  ( ( ( F `  n ) `
 z )  -  ( G `  z ) ) )  =  ( abs `  ( ( ( F `  n
) `  x )  -  ( G `  x ) ) ) )
8180breq1d 4305 . . . . . . . . . . . . . . . . 17  |-  ( z  =  x  ->  (
( abs `  (
( ( F `  n ) `  z
)  -  ( G `
 z ) ) )  <  ( r  /  ( ( vol `  S )  +  1 ) )  <->  ( abs `  ( ( ( F `
 n ) `  x )  -  ( G `  x )
) )  <  (
r  /  ( ( vol `  S )  +  1 ) ) ) )
8281rspccva 3075 . . . . . . . . . . . . . . . 16  |-  ( ( A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) )  /\  x  e.  S )  ->  ( abs `  ( ( ( F `  n ) `
 x )  -  ( G `  x ) ) )  <  (
r  /  ( ( vol `  S )  +  1 ) ) )
8376, 82sylan 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  <  ( r  /  ( ( vol `  S )  +  1 ) ) )
8459, 75, 83ltled 9525 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  <_  ( r  /  ( ( vol `  S )  +  1 ) ) )
8560, 74, 59, 75, 84itgle 21290 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  _d x  <_  S. S ( r  / 
( ( vol `  S
)  +  1 ) )  _d x )
86 itgconst 21299 . . . . . . . . . . . . . 14  |-  ( ( S  e.  dom  vol  /\  ( vol `  S
)  e.  RR  /\  ( r  /  (
( vol `  S
)  +  1 ) )  e.  CC )  ->  S. S ( r  /  ( ( vol `  S )  +  1 ) )  _d x  =  ( ( r  /  (
( vol `  S
)  +  1 ) )  x.  ( vol `  S ) ) )
8770, 67, 71, 86syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( r  / 
( ( vol `  S
)  +  1 ) )  _d x  =  ( ( r  / 
( ( vol `  S
)  +  1 ) )  x.  ( vol `  S ) ) )
8885, 87breqtrd 4319 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  _d x  <_ 
( ( r  / 
( ( vol `  S
)  +  1 ) )  x.  ( vol `  S ) ) )
8963recnd 9415 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
r  e.  CC )
9067recnd 9415 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( vol `  S
)  e.  CC )
9132adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  +  1 )  e.  RR+ )
9291rpcnd 11032 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  +  1 )  e.  CC )
9391rpne0d 11035 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  +  1 )  =/=  0 )
9489, 90, 92, 93div23d 10147 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( r  x.  ( vol `  S
) )  /  (
( vol `  S
)  +  1 ) )  =  ( ( r  /  ( ( vol `  S )  +  1 ) )  x.  ( vol `  S
) ) )
9567ltp1d 10266 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( vol `  S
)  <  ( ( vol `  S )  +  1 ) )
96 peano2re 9545 . . . . . . . . . . . . . . . . 17  |-  ( ( vol `  S )  e.  RR  ->  (
( vol `  S
)  +  1 )  e.  RR )
9767, 96syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  +  1 )  e.  RR )
98 rpgt0 11005 . . . . . . . . . . . . . . . . 17  |-  ( r  e.  RR+  ->  0  < 
r )
9998ad2antlr 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
0  <  r )
100 ltmul2 10183 . . . . . . . . . . . . . . . 16  |-  ( ( ( vol `  S
)  e.  RR  /\  ( ( vol `  S
)  +  1 )  e.  RR  /\  (
r  e.  RR  /\  0  <  r ) )  ->  ( ( vol `  S )  <  (
( vol `  S
)  +  1 )  <-> 
( r  x.  ( vol `  S ) )  <  ( r  x.  ( ( vol `  S
)  +  1 ) ) ) )
10167, 97, 63, 99, 100syl112anc 1222 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  <  ( ( vol `  S )  +  1 )  <->  ( r  x.  ( vol `  S
) )  <  (
r  x.  ( ( vol `  S )  +  1 ) ) ) )
10295, 101mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  x.  ( vol `  S ) )  <  ( r  x.  ( ( vol `  S
)  +  1 ) ) )
10363, 67remulcld 9417 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  x.  ( vol `  S ) )  e.  RR )
104103, 63, 91ltdivmul2d 11078 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( ( r  x.  ( vol `  S
) )  /  (
( vol `  S
)  +  1 ) )  <  r  <->  ( r  x.  ( vol `  S
) )  <  (
r  x.  ( ( vol `  S )  +  1 ) ) ) )
105102, 104mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( r  x.  ( vol `  S
) )  /  (
( vol `  S
)  +  1 ) )  <  r )
10694, 105eqbrtrrd 4317 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( r  / 
( ( vol `  S
)  +  1 ) )  x.  ( vol `  S ) )  < 
r )
10761, 68, 63, 88, 106lelttrd 9532 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  _d x  < 
r )
10858, 61, 63, 64, 107lelttrd 9532 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x )  <  r )
10954, 108eqbrtrrd 4317 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r )
110109expr 615 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  n  e.  Z )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) )  ->  ( abs `  ( S. S ( ( F `  n
) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r
) )
11135, 110sylan2 474 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  n  e.  ( ZZ>= `  j ) ) )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `
 n ) `  z )  -  ( G `  z )
) )  <  (
r  /  ( ( vol `  S )  +  1 ) )  ->  ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
112111anassrs 648 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  j  e.  Z )  /\  n  e.  ( ZZ>=
`  j ) )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `
 n ) `  z )  -  ( G `  z )
) )  <  (
r  /  ( ( vol `  S )  +  1 ) )  ->  ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
113112ralimdva 2797 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  j  e.  Z )  ->  ( A. n  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  n ) `
 z )  -  ( G `  z ) ) )  <  (
r  /  ( ( vol `  S )  +  1 ) )  ->  A. n  e.  (
ZZ>= `  j ) ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
114113reximdva 2831 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( E. j  e.  Z  A. n  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 n ) `  z )  -  ( G `  z )
) )  <  (
r  /  ( ( vol `  S )  +  1 ) )  ->  E. j  e.  Z  A. n  e.  ( ZZ>=
`  j ) ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
11534, 114mpd 15 . . 3  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. j  e.  Z  A. n  e.  ( ZZ>= `  j )
( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r )
116115ralrimiva 2802 . 2  |-  ( ph  ->  A. r  e.  RR+  E. j  e.  Z  A. n  e.  ( ZZ>= `  j ) ( abs `  ( S. S ( ( F `  n
) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r
)
117 fvex 5704 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
1181, 117eqeltri 2513 . . . . 5  |-  Z  e. 
_V
119118mptex 5951 . . . 4  |-  ( k  e.  Z  |->  S. S
( ( F `  k ) `  x
)  _d x )  e.  _V
120119a1i 11 . . 3  |-  ( ph  ->  ( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x )  e.  _V )
121 fveq2 5694 . . . . . . . 8  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
122121fveq1d 5696 . . . . . . 7  |-  ( k  =  n  ->  (
( F `  k
) `  x )  =  ( ( F `
 n ) `  x ) )
123122adantr 465 . . . . . 6  |-  ( ( k  =  n  /\  x  e.  S )  ->  ( ( F `  k ) `  x
)  =  ( ( F `  n ) `
 x ) )
124123itgeq2dv 21262 . . . . 5  |-  ( k  =  n  ->  S. S ( ( F `
 k ) `  x )  _d x  =  S. S ( ( F `  n
) `  x )  _d x )
125 eqid 2443 . . . . 5  |-  ( k  e.  Z  |->  S. S
( ( F `  k ) `  x
)  _d x )  =  ( k  e.  Z  |->  S. S ( ( F `  k
) `  x )  _d x )
126 itgex 21251 . . . . 5  |-  S. S
( ( F `  n ) `  x
)  _d x  e. 
_V
127124, 125, 126fvmpt 5777 . . . 4  |-  ( n  e.  Z  ->  (
( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x ) `  n
)  =  S. S
( ( F `  n ) `  x
)  _d x )
128127adantl 466 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x ) `  n
)  =  S. S
( ( F `  n ) `  x
)  _d x )
12947, 51itgcl 21264 . . 3  |-  ( ph  ->  S. S ( G `
 x )  _d x  e.  CC )
13039, 44itgcl 21264 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  S. S ( ( F `
 n ) `  x )  _d x  e.  CC )
1311, 2, 120, 128, 129, 130clim2c 12986 . 2  |-  ( ph  ->  ( ( k  e.  Z  |->  S. S ( ( F `  k
) `  x )  _d x )  ~~>  S. S
( G `  x
)  _d x  <->  A. r  e.  RR+  E. j  e.  Z  A. n  e.  ( ZZ>= `  j )
( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
132116, 131mpbird 232 1  |-  ( ph  ->  ( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x )  ~~>  S. S
( G `  x
)  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2718   E.wrex 2719   _Vcvv 2975    C_ wss 3331   {csn 3880   class class class wbr 4295    e. cmpt 4353    X. cxp 4841   dom cdm 4843    Fn wfn 5416   -->wf 5417   ` cfv 5421  (class class class)co 6094    ^m cmap 7217   CCcc 9283   RRcr 9284   0cc0 9285   1c1 9286    + caddc 9288    x. cmul 9290    < clt 9421    <_ cle 9422    - cmin 9598    / cdiv 9996   ZZcz 10649   ZZ>=cuz 10864   RR+crp 10994   abscabs 12726    ~~> cli 12965   vol*covol 20949   volcvol 20950  MblFncmbf 21097   L^1cibl 21100   S.citg 21101   ~~> uculm 21844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cc 8607  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363  ax-addf 9364  ax-mulf 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-iin 4177  df-disj 4266  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-ofr 6324  df-om 6480  df-1st 6580  df-2nd 6581  df-supp 6694  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-omul 6928  df-er 7104  df-map 7219  df-pm 7220  df-ixp 7267  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fsupp 7624  df-fi 7664  df-sup 7694  df-oi 7727  df-card 8112  df-acn 8115  df-cda 8340  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-10 10391  df-n0 10583  df-z 10650  df-dec 10759  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-ioo 11307  df-ioc 11308  df-ico 11309  df-icc 11310  df-fz 11441  df-fzo 11552  df-fl 11645  df-mod 11712  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-limsup 12952  df-clim 12969  df-rlim 12970  df-sum 13167  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-sets 14183  df-ress 14184  df-plusg 14254  df-mulr 14255  df-starv 14256  df-sca 14257  df-vsca 14258  df-ip 14259  df-tset 14260  df-ple 14261  df-ds 14263  df-unif 14264  df-hom 14265  df-cco 14266  df-rest 14364  df-topn 14365  df-0g 14383  df-gsum 14384  df-topgen 14385  df-pt 14386  df-prds 14389  df-xrs 14443  df-qtop 14448  df-imas 14449  df-xps 14451  df-mre 14527  df-mrc 14528  df-acs 14530  df-mnd 15418  df-submnd 15468  df-mulg 15551  df-cntz 15838  df-cmn 16282  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-cnfld 17822  df-top 18506  df-bases 18508  df-topon 18509  df-topsp 18510  df-cn 18834  df-cnp 18835  df-cmp 18993  df-tx 19138  df-hmeo 19331  df-xms 19898  df-ms 19899  df-tms 19900  df-cncf 20457  df-ovol 20951  df-vol 20952  df-mbf 21102  df-itg1 21103  df-itg2 21104  df-ibl 21105  df-itg 21106  df-0p 21151  df-ulm 21845
This theorem is referenced by:  itgulm2  21877
  Copyright terms: Public domain W3C validator