MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm Structured version   Unicode version

Theorem itgulm 23355
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm.z  |-  Z  =  ( ZZ>= `  M )
itgulm.m  |-  ( ph  ->  M  e.  ZZ )
itgulm.f  |-  ( ph  ->  F : Z --> L^1 )
itgulm.u  |-  ( ph  ->  F ( ~~> u `  S ) G )
itgulm.s  |-  ( ph  ->  ( vol `  S
)  e.  RR )
Assertion
Ref Expression
itgulm  |-  ( ph  ->  ( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x )  ~~>  S. S
( G `  x
)  _d x )
Distinct variable groups:    x, k, F    k, G, x    ph, k, x    k, M, x    S, k, x    k, Z, x

Proof of Theorem itgulm
Dummy variables  j  n  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm.z . . . . 5  |-  Z  =  ( ZZ>= `  M )
2 itgulm.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
32adantr 467 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  M  e.  ZZ )
4 itgulm.f . . . . . . . 8  |-  ( ph  ->  F : Z --> L^1 )
5 ffn 5744 . . . . . . . 8  |-  ( F : Z --> L^1 
->  F  Fn  Z
)
64, 5syl 17 . . . . . . 7  |-  ( ph  ->  F  Fn  Z )
7 itgulm.u . . . . . . 7  |-  ( ph  ->  F ( ~~> u `  S ) G )
8 ulmf2 23331 . . . . . . 7  |-  ( ( F  Fn  Z  /\  F ( ~~> u `  S ) G )  ->  F : Z --> ( CC  ^m  S ) )
96, 7, 8syl2anc 666 . . . . . 6  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
109adantr 467 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  F : Z
--> ( CC  ^m  S
) )
11 eqidd 2424 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  z  e.  S )
)  ->  ( ( F `  n ) `  z )  =  ( ( F `  n
) `  z )
)
12 eqidd 2424 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  z  e.  S )  ->  ( G `  z )  =  ( G `  z ) )
137adantr 467 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  F ( ~~> u `  S ) G )
14 simpr 463 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  r  e.  RR+ )
15 itgulm.s . . . . . . . 8  |-  ( ph  ->  ( vol `  S
)  e.  RR )
1615adantr 467 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( vol `  S )  e.  RR )
17 ulmcl 23328 . . . . . . . . . . . 12  |-  ( F ( ~~> u `  S
) G  ->  G : S --> CC )
18 fdm 5748 . . . . . . . . . . . 12  |-  ( G : S --> CC  ->  dom 
G  =  S )
197, 17, 183syl 18 . . . . . . . . . . 11  |-  ( ph  ->  dom  G  =  S )
201, 2, 4, 7, 15iblulm 23354 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  L^1 )
21 iblmbf 22717 . . . . . . . . . . . 12  |-  ( G  e.  L^1  ->  G  e. MblFn )
22 mbfdm 22576 . . . . . . . . . . . 12  |-  ( G  e. MblFn  ->  dom  G  e.  dom  vol )
2320, 21, 223syl 18 . . . . . . . . . . 11  |-  ( ph  ->  dom  G  e.  dom  vol )
2419, 23eqeltrrd 2512 . . . . . . . . . 10  |-  ( ph  ->  S  e.  dom  vol )
25 mblss 22477 . . . . . . . . . 10  |-  ( S  e.  dom  vol  ->  S 
C_  RR )
26 ovolge0 22426 . . . . . . . . . 10  |-  ( S 
C_  RR  ->  0  <_ 
( vol* `  S ) )
2724, 25, 263syl 18 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( vol* `  S ) )
28 mblvol 22476 . . . . . . . . . 10  |-  ( S  e.  dom  vol  ->  ( vol `  S )  =  ( vol* `  S ) )
2924, 28syl 17 . . . . . . . . 9  |-  ( ph  ->  ( vol `  S
)  =  ( vol* `  S )
)
3027, 29breqtrrd 4448 . . . . . . . 8  |-  ( ph  ->  0  <_  ( vol `  S ) )
3130adantr 467 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  0  <_  ( vol `  S ) )
3216, 31ge0p1rpd 11370 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( vol `  S )  +  1 )  e.  RR+ )
3314, 32rpdivcld 11360 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( r  /  ( ( vol `  S )  +  1 ) )  e.  RR+ )
341, 3, 10, 11, 12, 13, 33ulmi 23333 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. j  e.  Z  A. n  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) )
351uztrn2 11178 . . . . . . . 8  |-  ( ( j  e.  Z  /\  n  e.  ( ZZ>= `  j ) )  ->  n  e.  Z )
369ffvelrnda 6035 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  ( CC  ^m  S
) )
37 elmapi 7499 . . . . . . . . . . . . . . . 16  |-  ( ( F `  n )  e.  ( CC  ^m  S )  ->  ( F `  n ) : S --> CC )
3836, 37syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n ) : S --> CC )
3938ffvelrnda 6035 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  Z )  /\  x  e.  S )  ->  (
( F `  n
) `  x )  e.  CC )
4039adantllr 724 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  n  e.  Z )  /\  x  e.  S
)  ->  ( ( F `  n ) `  x )  e.  CC )
4140adantlrr 726 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( ( F `  n ) `  x
)  e.  CC )
4238feqmptd 5932 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  =  ( x  e.  S  |->  ( ( F `
 n ) `  x ) ) )
434ffvelrnda 6035 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  L^1 )
4442, 43eqeltrrd 2512 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  S  |->  ( ( F `  n
) `  x )
)  e.  L^1 )
4544ad2ant2r 752 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( ( F `  n ) `  x
) )  e.  L^1 )
467, 17syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G : S --> CC )
4746ffvelrnda 6035 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  S )  ->  ( G `  x )  e.  CC )
4847adantlr 720 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  x  e.  S )  ->  ( G `  x )  e.  CC )
4948adantlr 720 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( G `  x
)  e.  CC )
5046feqmptd 5932 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  =  ( x  e.  S  |->  ( G `
 x ) ) )
5150, 20eqeltrrd 2512 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  S  |->  ( G `  x
) )  e.  L^1 )
5251ad2antrr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( G `  x
) )  e.  L^1 )
5341, 45, 49, 52itgsub 22775 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x  =  ( S. S ( ( F `  n
) `  x )  _d x  -  S. S ( G `  x )  _d x ) )
5453fveq2d 5883 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x )  =  ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) ) )
5541, 49subcld 9988 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( ( ( F `
 n ) `  x )  -  ( G `  x )
)  e.  CC )
5641, 45, 49, 52iblsub 22771 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( ( ( F `
 n ) `  x )  -  ( G `  x )
) )  e.  L^1 )
5755, 56itgcl 22733 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x  e.  CC )
5857abscld 13491 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x )  e.  RR )
5955abscld 13491 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  e.  RR )
6055, 56iblabs 22778 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) ) )  e.  L^1 )
6159, 60itgrecl 22747 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  _d x  e.  RR )
62 rpre 11310 . . . . . . . . . . . 12  |-  ( r  e.  RR+  ->  r  e.  RR )
6362ad2antlr 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
r  e.  RR )
6455, 56itgabs 22784 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x )  <_  S. S ( abs `  ( ( ( F `  n
) `  x )  -  ( G `  x ) ) )  _d x )
6533adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  /  (
( vol `  S
)  +  1 ) )  e.  RR+ )
6665rpred 11343 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  /  (
( vol `  S
)  +  1 ) )  e.  RR )
6715ad2antrr 731 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( vol `  S
)  e.  RR )
6866, 67remulcld 9673 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( r  / 
( ( vol `  S
)  +  1 ) )  x.  ( vol `  S ) )  e.  RR )
69 fconstmpt 4895 . . . . . . . . . . . . . . 15  |-  ( S  X.  { ( r  /  ( ( vol `  S )  +  1 ) ) } )  =  ( x  e.  S  |->  ( r  / 
( ( vol `  S
)  +  1 ) ) )
7024ad2antrr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S  e.  dom  vol )
7165rpcnd 11345 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  /  (
( vol `  S
)  +  1 ) )  e.  CC )
72 iblconst 22767 . . . . . . . . . . . . . . . 16  |-  ( ( S  e.  dom  vol  /\  ( vol `  S
)  e.  RR  /\  ( r  /  (
( vol `  S
)  +  1 ) )  e.  CC )  ->  ( S  X.  { ( r  / 
( ( vol `  S
)  +  1 ) ) } )  e.  L^1 )
7370, 67, 71, 72syl3anc 1265 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( S  X.  {
( r  /  (
( vol `  S
)  +  1 ) ) } )  e.  L^1 )
7469, 73syl5eqelr 2516 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( x  e.  S  |->  ( r  /  (
( vol `  S
)  +  1 ) ) )  e.  L^1 )
7566adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( r  /  (
( vol `  S
)  +  1 ) )  e.  RR )
76 simprr 765 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) )
77 fveq2 5879 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  x  ->  (
( F `  n
) `  z )  =  ( ( F `
 n ) `  x ) )
78 fveq2 5879 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  x  ->  ( G `  z )  =  ( G `  x ) )
7977, 78oveq12d 6321 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  x  ->  (
( ( F `  n ) `  z
)  -  ( G `
 z ) )  =  ( ( ( F `  n ) `
 x )  -  ( G `  x ) ) )
8079fveq2d 5883 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  x  ->  ( abs `  ( ( ( F `  n ) `
 z )  -  ( G `  z ) ) )  =  ( abs `  ( ( ( F `  n
) `  x )  -  ( G `  x ) ) ) )
8180breq1d 4431 . . . . . . . . . . . . . . . . 17  |-  ( z  =  x  ->  (
( abs `  (
( ( F `  n ) `  z
)  -  ( G `
 z ) ) )  <  ( r  /  ( ( vol `  S )  +  1 ) )  <->  ( abs `  ( ( ( F `
 n ) `  x )  -  ( G `  x )
) )  <  (
r  /  ( ( vol `  S )  +  1 ) ) ) )
8281rspccva 3182 . . . . . . . . . . . . . . . 16  |-  ( ( A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) )  /\  x  e.  S )  ->  ( abs `  ( ( ( F `  n ) `
 x )  -  ( G `  x ) ) )  <  (
r  /  ( ( vol `  S )  +  1 ) ) )
8376, 82sylan 474 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  <  ( r  /  ( ( vol `  S )  +  1 ) ) )
8459, 75, 83ltled 9785 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  /\  x  e.  S )  ->  ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  <_  ( r  /  ( ( vol `  S )  +  1 ) ) )
8560, 74, 59, 75, 84itgle 22759 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  _d x  <_  S. S ( r  / 
( ( vol `  S
)  +  1 ) )  _d x )
86 itgconst 22768 . . . . . . . . . . . . . 14  |-  ( ( S  e.  dom  vol  /\  ( vol `  S
)  e.  RR  /\  ( r  /  (
( vol `  S
)  +  1 ) )  e.  CC )  ->  S. S ( r  /  ( ( vol `  S )  +  1 ) )  _d x  =  ( ( r  /  (
( vol `  S
)  +  1 ) )  x.  ( vol `  S ) ) )
8770, 67, 71, 86syl3anc 1265 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( r  / 
( ( vol `  S
)  +  1 ) )  _d x  =  ( ( r  / 
( ( vol `  S
)  +  1 ) )  x.  ( vol `  S ) ) )
8885, 87breqtrd 4446 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  _d x  <_ 
( ( r  / 
( ( vol `  S
)  +  1 ) )  x.  ( vol `  S ) ) )
8963recnd 9671 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
r  e.  CC )
9067recnd 9671 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( vol `  S
)  e.  CC )
9132adantr 467 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  +  1 )  e.  RR+ )
9291rpcnd 11345 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  +  1 )  e.  CC )
9391rpne0d 11348 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  +  1 )  =/=  0 )
9489, 90, 92, 93div23d 10422 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( r  x.  ( vol `  S
) )  /  (
( vol `  S
)  +  1 ) )  =  ( ( r  /  ( ( vol `  S )  +  1 ) )  x.  ( vol `  S
) ) )
9567ltp1d 10539 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( vol `  S
)  <  ( ( vol `  S )  +  1 ) )
96 peano2re 9808 . . . . . . . . . . . . . . . . 17  |-  ( ( vol `  S )  e.  RR  ->  (
( vol `  S
)  +  1 )  e.  RR )
9767, 96syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  +  1 )  e.  RR )
98 rpgt0 11315 . . . . . . . . . . . . . . . . 17  |-  ( r  e.  RR+  ->  0  < 
r )
9998ad2antlr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
0  <  r )
100 ltmul2 10458 . . . . . . . . . . . . . . . 16  |-  ( ( ( vol `  S
)  e.  RR  /\  ( ( vol `  S
)  +  1 )  e.  RR  /\  (
r  e.  RR  /\  0  <  r ) )  ->  ( ( vol `  S )  <  (
( vol `  S
)  +  1 )  <-> 
( r  x.  ( vol `  S ) )  <  ( r  x.  ( ( vol `  S
)  +  1 ) ) ) )
10167, 97, 63, 99, 100syl112anc 1269 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( vol `  S
)  <  ( ( vol `  S )  +  1 )  <->  ( r  x.  ( vol `  S
) )  <  (
r  x.  ( ( vol `  S )  +  1 ) ) ) )
10295, 101mpbid 214 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  x.  ( vol `  S ) )  <  ( r  x.  ( ( vol `  S
)  +  1 ) ) )
10363, 67remulcld 9673 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( r  x.  ( vol `  S ) )  e.  RR )
104103, 63, 91ltdivmul2d 11392 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( ( r  x.  ( vol `  S
) )  /  (
( vol `  S
)  +  1 ) )  <  r  <->  ( r  x.  ( vol `  S
) )  <  (
r  x.  ( ( vol `  S )  +  1 ) ) ) )
105102, 104mpbird 236 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( r  x.  ( vol `  S
) )  /  (
( vol `  S
)  +  1 ) )  <  r )
10694, 105eqbrtrrd 4444 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( ( r  / 
( ( vol `  S
)  +  1 ) )  x.  ( vol `  S ) )  < 
r )
10761, 68, 63, 88, 106lelttrd 9795 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  ->  S. S ( abs `  (
( ( F `  n ) `  x
)  -  ( G `
 x ) ) )  _d x  < 
r )
10858, 61, 63, 64, 107lelttrd 9795 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  S. S ( ( ( F `  n ) `
 x )  -  ( G `  x ) )  _d x )  <  r )
10954, 108eqbrtrrd 4444 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  Z  /\  A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) ) ) )  -> 
( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r )
110109expr 619 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  n  e.  Z )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  n
) `  z )  -  ( G `  z ) ) )  <  ( r  / 
( ( vol `  S
)  +  1 ) )  ->  ( abs `  ( S. S ( ( F `  n
) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r
) )
11135, 110sylan2 477 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  n  e.  ( ZZ>= `  j ) ) )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `
 n ) `  z )  -  ( G `  z )
) )  <  (
r  /  ( ( vol `  S )  +  1 ) )  ->  ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
112111anassrs 653 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  j  e.  Z )  /\  n  e.  ( ZZ>=
`  j ) )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `
 n ) `  z )  -  ( G `  z )
) )  <  (
r  /  ( ( vol `  S )  +  1 ) )  ->  ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
113112ralimdva 2834 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  j  e.  Z )  ->  ( A. n  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  n ) `
 z )  -  ( G `  z ) ) )  <  (
r  /  ( ( vol `  S )  +  1 ) )  ->  A. n  e.  (
ZZ>= `  j ) ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
114113reximdva 2901 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( E. j  e.  Z  A. n  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 n ) `  z )  -  ( G `  z )
) )  <  (
r  /  ( ( vol `  S )  +  1 ) )  ->  E. j  e.  Z  A. n  e.  ( ZZ>=
`  j ) ( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
11534, 114mpd 15 . . 3  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. j  e.  Z  A. n  e.  ( ZZ>= `  j )
( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r )
116115ralrimiva 2840 . 2  |-  ( ph  ->  A. r  e.  RR+  E. j  e.  Z  A. n  e.  ( ZZ>= `  j ) ( abs `  ( S. S ( ( F `  n
) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r
)
117 fvex 5889 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
1181, 117eqeltri 2507 . . . . 5  |-  Z  e. 
_V
119118mptex 6149 . . . 4  |-  ( k  e.  Z  |->  S. S
( ( F `  k ) `  x
)  _d x )  e.  _V
120119a1i 11 . . 3  |-  ( ph  ->  ( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x )  e.  _V )
121 fveq2 5879 . . . . . . . 8  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
122121fveq1d 5881 . . . . . . 7  |-  ( k  =  n  ->  (
( F `  k
) `  x )  =  ( ( F `
 n ) `  x ) )
123122adantr 467 . . . . . 6  |-  ( ( k  =  n  /\  x  e.  S )  ->  ( ( F `  k ) `  x
)  =  ( ( F `  n ) `
 x ) )
124123itgeq2dv 22731 . . . . 5  |-  ( k  =  n  ->  S. S ( ( F `
 k ) `  x )  _d x  =  S. S ( ( F `  n
) `  x )  _d x )
125 eqid 2423 . . . . 5  |-  ( k  e.  Z  |->  S. S
( ( F `  k ) `  x
)  _d x )  =  ( k  e.  Z  |->  S. S ( ( F `  k
) `  x )  _d x )
126 itgex 22720 . . . . 5  |-  S. S
( ( F `  n ) `  x
)  _d x  e. 
_V
127124, 125, 126fvmpt 5962 . . . 4  |-  ( n  e.  Z  ->  (
( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x ) `  n
)  =  S. S
( ( F `  n ) `  x
)  _d x )
128127adantl 468 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  (
( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x ) `  n
)  =  S. S
( ( F `  n ) `  x
)  _d x )
12947, 51itgcl 22733 . . 3  |-  ( ph  ->  S. S ( G `
 x )  _d x  e.  CC )
13039, 44itgcl 22733 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  S. S ( ( F `
 n ) `  x )  _d x  e.  CC )
1311, 2, 120, 128, 129, 130clim2c 13562 . 2  |-  ( ph  ->  ( ( k  e.  Z  |->  S. S ( ( F `  k
) `  x )  _d x )  ~~>  S. S
( G `  x
)  _d x  <->  A. r  e.  RR+  E. j  e.  Z  A. n  e.  ( ZZ>= `  j )
( abs `  ( S. S ( ( F `
 n ) `  x )  _d x  -  S. S ( G `  x )  _d x ) )  <  r ) )
132116, 131mpbird 236 1  |-  ( ph  ->  ( k  e.  Z  |->  S. S ( ( F `  k ) `
 x )  _d x )  ~~>  S. S
( G `  x
)  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1869   A.wral 2776   E.wrex 2777   _Vcvv 3082    C_ wss 3437   {csn 3997   class class class wbr 4421    |-> cmpt 4480    X. cxp 4849   dom cdm 4851    Fn wfn 5594   -->wf 5595   ` cfv 5599  (class class class)co 6303    ^m cmap 7478   CCcc 9539   RRcr 9540   0cc0 9541   1c1 9542    + caddc 9544    x. cmul 9546    < clt 9677    <_ cle 9678    - cmin 9862    / cdiv 10271   ZZcz 10939   ZZ>=cuz 11161   RR+crp 11304   abscabs 13291    ~~> cli 13541   vol*covol 22405   volcvol 22407  MblFncmbf 22564   L^1cibl 22567   S.citg 22568   ~~> uculm 23323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cc 8867  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619  ax-addf 9620  ax-mulf 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-iin 4300  df-disj 4393  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-of 6543  df-ofr 6544  df-om 6705  df-1st 6805  df-2nd 6806  df-supp 6924  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-2o 7189  df-oadd 7192  df-omul 7193  df-er 7369  df-map 7480  df-pm 7481  df-ixp 7529  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fsupp 7888  df-fi 7929  df-sup 7960  df-inf 7961  df-oi 8029  df-card 8376  df-acn 8379  df-cda 8600  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-10 10678  df-n0 10872  df-z 10940  df-dec 11054  df-uz 11162  df-q 11267  df-rp 11305  df-xneg 11411  df-xadd 11412  df-xmul 11413  df-ioo 11641  df-ioc 11642  df-ico 11643  df-icc 11644  df-fz 11787  df-fzo 11918  df-fl 12029  df-mod 12098  df-seq 12215  df-exp 12274  df-hash 12517  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-limsup 13519  df-clim 13545  df-rlim 13546  df-sum 13746  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-hom 15207  df-cco 15208  df-rest 15314  df-topn 15315  df-0g 15333  df-gsum 15334  df-topgen 15335  df-pt 15336  df-prds 15339  df-xrs 15393  df-qtop 15399  df-imas 15400  df-xps 15403  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576  df-mulg 16669  df-cntz 16964  df-cmn 17425  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-cnfld 18964  df-top 19913  df-bases 19914  df-topon 19915  df-topsp 19916  df-cn 20235  df-cnp 20236  df-cmp 20394  df-tx 20569  df-hmeo 20762  df-xms 21327  df-ms 21328  df-tms 21329  df-cncf 21902  df-ovol 22408  df-vol 22410  df-mbf 22569  df-itg1 22570  df-itg2 22571  df-ibl 22572  df-itg 22573  df-0p 22620  df-ulm 23324
This theorem is referenced by:  itgulm2  23356
  Copyright terms: Public domain W3C validator