MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsubstlem Unicode version

Theorem itgsubstlem 19885
Description: Lemma for itgsubst 19886. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
itgsubst.x  |-  ( ph  ->  X  e.  RR )
itgsubst.y  |-  ( ph  ->  Y  e.  RR )
itgsubst.le  |-  ( ph  ->  X  <_  Y )
itgsubst.z  |-  ( ph  ->  Z  e.  RR* )
itgsubst.w  |-  ( ph  ->  W  e.  RR* )
itgsubst.a  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
itgsubst.b  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L ^1 ) )
itgsubst.c  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC ) )
itgsubst.da  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
itgsubst.e  |-  ( u  =  A  ->  C  =  E )
itgsubst.k  |-  ( x  =  X  ->  A  =  K )
itgsubst.l  |-  ( x  =  Y  ->  A  =  L )
itgsubst.m  |-  ( ph  ->  M  e.  ( Z (,) W ) )
itgsubst.n  |-  ( ph  ->  N  e.  ( Z (,) W ) )
itgsubst.cl2  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( M (,) N ) )
Assertion
Ref Expression
itgsubstlem  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Distinct variable groups:    u, E    x, u, K    u, M, x    ph, u, x    u, X, x    u, Y, x   
u, A    x, C    u, W, x    u, L, x    u, N, x   
u, Z, x
Allowed substitution hints:    A( x)    B( x, u)    C( u)    E( x)

Proof of Theorem itgsubstlem
Dummy variables  y 
z  t  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgsubst.le . . 3  |-  ( ph  ->  X  <_  Y )
21ditgpos 19696 . 2  |-  ( ph  ->  S__ [ X  ->  Y ] ( E  x.  B )  _d x  =  S. ( X (,) Y ) ( E  x.  B )  _d x )
3 itgsubst.x . . . 4  |-  ( ph  ->  X  e.  RR )
4 itgsubst.y . . . 4  |-  ( ph  ->  Y  e.  RR )
5 ax-resscn 9003 . . . . . . . 8  |-  RR  C_  CC
65a1i 11 . . . . . . 7  |-  ( ph  ->  RR  C_  CC )
7 iccssre 10948 . . . . . . . 8  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X [,] Y
)  C_  RR )
83, 4, 7syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( X [,] Y
)  C_  RR )
9 itgsubst.cl2 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( M (,) N ) )
10 eqidd 2405 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  =  ( x  e.  ( X [,] Y )  |->  A ) )
11 eqidd 2405 . . . . . . . . . . . 12  |-  ( ph  ->  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u )  =  ( v  e.  ( M (,) N )  |->  S. ( M (,) v
) C  _d u ) )
12 oveq2 6048 . . . . . . . . . . . . 13  |-  ( v  =  A  ->  ( M (,) v )  =  ( M (,) A
) )
13 itgeq1 19617 . . . . . . . . . . . . 13  |-  ( ( M (,) v )  =  ( M (,) A )  ->  S. ( M (,) v ) C  _d u  =  S. ( M (,) A ) C  _d u )
1412, 13syl 16 . . . . . . . . . . . 12  |-  ( v  =  A  ->  S. ( M (,) v ) C  _d u  =  S. ( M (,) A ) C  _d u )
159, 10, 11, 14fmptco 5860 . . . . . . . . . . 11  |-  ( ph  ->  ( ( v  e.  ( M (,) N
)  |->  S. ( M (,) v ) C  _d u )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) )  =  ( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u ) )
16 eqid 2404 . . . . . . . . . . . . . 14  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( x  e.  ( X [,] Y
)  |->  A )
179, 16fmptd 5852 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( M (,) N
) )
18 ioossicc 10952 . . . . . . . . . . . . . . . 16  |-  ( M (,) N )  C_  ( M [,] N )
19 itgsubst.z . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Z  e.  RR* )
20 itgsubst.w . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  W  e.  RR* )
21 itgsubst.m . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  e.  ( Z (,) W ) )
22 eliooord 10926 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  ( Z (,) W )  ->  ( Z  <  M  /\  M  <  W ) )
2321, 22syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( Z  <  M  /\  M  <  W ) )
2423simpld 446 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Z  <  M )
25 itgsubst.n . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  ( Z (,) W ) )
26 eliooord 10926 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ( Z (,) W )  ->  ( Z  <  N  /\  N  <  W ) )
2725, 26syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( Z  <  N  /\  N  <  W ) )
2827simprd 450 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  <  W )
29 iccssioo 10935 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Z  e.  RR*  /\  W  e.  RR* )  /\  ( Z  <  M  /\  N  <  W ) )  ->  ( M [,] N )  C_  ( Z (,) W ) )
3019, 20, 24, 28, 29syl22anc 1185 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M [,] N
)  C_  ( Z (,) W ) )
3118, 30syl5ss 3319 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M (,) N
)  C_  ( Z (,) W ) )
32 ioossre 10928 . . . . . . . . . . . . . . . . 17  |-  ( Z (,) W )  C_  RR
3332a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Z (,) W
)  C_  RR )
3433, 5syl6ss 3320 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Z (,) W
)  C_  CC )
3531, 34sstrd 3318 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M (,) N
)  C_  CC )
36 itgsubst.a . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
37 cncffvrn 18881 . . . . . . . . . . . . . 14  |-  ( ( ( M (,) N
)  C_  CC  /\  (
x  e.  ( X [,] Y )  |->  A )  e.  ( ( X [,] Y )
-cn-> ( Z (,) W
) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A )  e.  ( ( X [,] Y ) -cn-> ( M (,) N ) )  <-> 
( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( M (,) N
) ) )
3835, 36, 37syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  A )  e.  ( ( X [,] Y ) -cn-> ( M (,) N ) )  <-> 
( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( M (,) N
) ) )
3917, 38mpbird 224 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( M (,) N ) ) )
4018sseli 3304 . . . . . . . . . . . . . . 15  |-  ( v  e.  ( M (,) N )  ->  v  e.  ( M [,] N
) )
4132, 25sseldi 3306 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  N  e.  RR )
4241rexrd 9090 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  RR* )
4342adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  N  e.  RR* )
4432, 21sseldi 3306 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  M  e.  RR )
45 elicc2 10931 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( v  e.  ( M [,] N )  <-> 
( v  e.  RR  /\  M  <_  v  /\  v  <_  N ) ) )
4644, 41, 45syl2anc 643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( v  e.  ( M [,] N )  <-> 
( v  e.  RR  /\  M  <_  v  /\  v  <_  N ) ) )
4746biimpa 471 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( v  e.  RR  /\  M  <_ 
v  /\  v  <_  N ) )
4847simp3d 971 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  v  <_  N )
49 iooss2 10908 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  RR*  /\  v  <_  N )  ->  ( M (,) v )  C_  ( M (,) N ) )
5043, 48, 49syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( M (,) v )  C_  ( M (,) N ) )
5150sselda 3308 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( M [,] N
) )  /\  u  e.  ( M (,) v
) )  ->  u  e.  ( M (,) N
) )
5231sselda 3308 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( M (,) N ) )  ->  u  e.  ( Z (,) W ) )
53 itgsubst.c . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC ) )
54 cncff 18876 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( u  e.  ( Z (,) W )  |->  C )  e.  ( ( Z (,) W )
-cn-> CC )  ->  (
u  e.  ( Z (,) W )  |->  C ) : ( Z (,) W ) --> CC )
5553, 54syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C ) : ( Z (,) W ) --> CC )
56 eqid 2404 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  e.  ( Z (,) W )  |->  C )  =  ( u  e.  ( Z (,) W
)  |->  C )
5756fmpt 5849 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. u  e.  ( Z (,) W ) C  e.  CC  <->  ( u  e.  ( Z (,) W
)  |->  C ) : ( Z (,) W
) --> CC )
5855, 57sylibr 204 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A. u  e.  ( Z (,) W ) C  e.  CC )
5958r19.21bi 2764 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( Z (,) W ) )  ->  C  e.  CC )
6052, 59syldan 457 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  ( M (,) N ) )  ->  C  e.  CC )
6160adantlr 696 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( M [,] N
) )  /\  u  e.  ( M (,) N
) )  ->  C  e.  CC )
6251, 61syldan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  ( M [,] N
) )  /\  u  e.  ( M (,) v
) )  ->  C  e.  CC )
63 ioombl 19412 . . . . . . . . . . . . . . . . . 18  |-  ( M (,) v )  e. 
dom  vol
6463a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( M (,) v )  e.  dom  vol )
6518a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M (,) N
)  C_  ( M [,] N ) )
66 ioombl 19412 . . . . . . . . . . . . . . . . . . . 20  |-  ( M (,) N )  e. 
dom  vol
6766a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M (,) N
)  e.  dom  vol )
6830sselda 3308 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  ( M [,] N ) )  ->  u  e.  ( Z (,) W ) )
6968, 59syldan 457 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( M [,] N ) )  ->  C  e.  CC )
70 resmpt 5150 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M [,] N ) 
C_  ( Z (,) W )  ->  (
( u  e.  ( Z (,) W ) 
|->  C )  |`  ( M [,] N ) )  =  ( u  e.  ( M [,] N
)  |->  C ) )
7130, 70syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  |`  ( M [,] N ) )  =  ( u  e.  ( M [,] N )  |->  C ) )
72 rescncf 18880 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M [,] N ) 
C_  ( Z (,) W )  ->  (
( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC )  ->  (
( u  e.  ( Z (,) W ) 
|->  C )  |`  ( M [,] N ) )  e.  ( ( M [,] N ) -cn-> CC ) ) )
7330, 53, 72sylc 58 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  |`  ( M [,] N ) )  e.  ( ( M [,] N )
-cn-> CC ) )
7471, 73eqeltrrd 2479 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( u  e.  ( M [,] N ) 
|->  C )  e.  ( ( M [,] N
) -cn-> CC ) )
75 cniccibl 19685 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  (
u  e.  ( M [,] N )  |->  C )  e.  ( ( M [,] N )
-cn-> CC ) )  -> 
( u  e.  ( M [,] N ) 
|->  C )  e.  L ^1 )
7644, 41, 74, 75syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( u  e.  ( M [,] N ) 
|->  C )  e.  L ^1 )
7765, 67, 69, 76iblss 19649 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( u  e.  ( M (,) N ) 
|->  C )  e.  L ^1 )
7877adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( u  e.  ( M (,) N
)  |->  C )  e.  L ^1 )
7950, 64, 61, 78iblss 19649 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( u  e.  ( M (,) v
)  |->  C )  e.  L ^1 )
8062, 79itgcl 19628 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  S. ( M (,) v ) C  _d u  e.  CC )
8140, 80sylan2 461 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( M (,) N ) )  ->  S. ( M (,) v ) C  _d u  e.  CC )
82 eqid 2404 . . . . . . . . . . . . . 14  |-  ( v  e.  ( M (,) N )  |->  S. ( M (,) v ) C  _d u )  =  ( v  e.  ( M (,) N
)  |->  S. ( M (,) v ) C  _d u )
8381, 82fmptd 5852 . . . . . . . . . . . . 13  |-  ( ph  ->  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u ) : ( M (,) N ) --> CC )
8431, 32syl6ss 3320 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M (,) N
)  C_  RR )
85 fveq2 5687 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  u  ->  (
( u  e.  ( M (,) N ) 
|->  C ) `  t
)  =  ( ( u  e.  ( M (,) N )  |->  C ) `  u ) )
86 nffvmpt1 5695 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ u
( ( u  e.  ( M (,) N
)  |->  C ) `  t )
87 nfcv 2540 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ t
( ( u  e.  ( M (,) N
)  |->  C ) `  u )
8885, 86, 87cbvitg 19620 . . . . . . . . . . . . . . . . . . 19  |-  S. ( M (,) v ) ( ( u  e.  ( M (,) N
)  |->  C ) `  t )  _d t  =  S. ( M (,) v ) ( ( u  e.  ( M (,) N ) 
|->  C ) `  u
)  _d u
89 eqid 2404 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  e.  ( M (,) N )  |->  C )  =  ( u  e.  ( M (,) N
)  |->  C )
9089fvmpt2 5771 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( u  e.  ( M (,) N )  /\  C  e.  CC )  ->  ( ( u  e.  ( M (,) N
)  |->  C ) `  u )  =  C )
9151, 62, 90syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  v  e.  ( M [,] N
) )  /\  u  e.  ( M (,) v
) )  ->  (
( u  e.  ( M (,) N ) 
|->  C ) `  u
)  =  C )
9291itgeq2dv 19626 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  S. ( M (,) v ) ( ( u  e.  ( M (,) N ) 
|->  C ) `  u
)  _d u  =  S. ( M (,) v ) C  _d u )
9388, 92syl5eq 2448 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  S. ( M (,) v ) ( ( u  e.  ( M (,) N ) 
|->  C ) `  t
)  _d t  =  S. ( M (,) v ) C  _d u )
9493mpteq2dva 4255 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( v  e.  ( M [,] N ) 
|->  S. ( M (,) v ) ( ( u  e.  ( M (,) N )  |->  C ) `  t )  _d t )  =  ( v  e.  ( M [,] N ) 
|->  S. ( M (,) v ) C  _d u ) )
9594oveq2d 6056 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M [,] N )  |->  S. ( M (,) v
) ( ( u  e.  ( M (,) N )  |->  C ) `
 t )  _d t ) )  =  ( RR  _D  (
v  e.  ( M [,] N )  |->  S. ( M (,) v
) C  _d u ) ) )
96 eqid 2404 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( M [,] N )  |->  S. ( M (,) v ) ( ( u  e.  ( M (,) N
)  |->  C ) `  t )  _d t )  =  ( v  e.  ( M [,] N )  |->  S. ( M (,) v ) ( ( u  e.  ( M (,) N
)  |->  C ) `  t )  _d t )
973rexrd 9090 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  X  e.  RR* )
984rexrd 9090 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  Y  e.  RR* )
99 lbicc2 10969 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  X  e.  ( X [,] Y
) )
10097, 98, 1, 99syl3anc 1184 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  X  e.  ( X [,] Y ) )
101 n0i 3593 . . . . . . . . . . . . . . . . . . . . 21  |-  ( X  e.  ( X [,] Y )  ->  -.  ( X [,] Y )  =  (/) )
102100, 101syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  -.  ( X [,] Y )  =  (/) )
103 feq3 5537 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M (,) N )  =  (/)  ->  ( ( x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( M (,) N )  <-> 
( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) -->
(/) ) )
10417, 103syl5ibcom 212 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( M (,) N )  =  (/)  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) -->
(/) ) )
105 f00 5587 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> (/)  <->  (
( x  e.  ( X [,] Y ) 
|->  A )  =  (/)  /\  ( X [,] Y
)  =  (/) ) )
106105simprbi 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> (/)  ->  ( X [,] Y
)  =  (/) )
107104, 106syl6 31 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( M (,) N )  =  (/)  ->  ( X [,] Y
)  =  (/) ) )
108102, 107mtod 170 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  -.  ( M (,) N )  =  (/) )
10944rexrd 9090 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  RR* )
110 ioo0 10897 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  RR*  /\  N  e.  RR* )  ->  (
( M (,) N
)  =  (/)  <->  N  <_  M ) )
111109, 42, 110syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( M (,) N )  =  (/)  <->  N  <_  M ) )
112108, 111mtbid 292 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  -.  N  <_  M
)
11341, 44letrid 9179 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( N  <_  M  \/  M  <_  N ) )
114113ord 367 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( -.  N  <_  M  ->  M  <_  N
) )
115112, 114mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  <_  N )
116 resmpt 5150 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M (,) N ) 
C_  ( M [,] N )  ->  (
( u  e.  ( M [,] N ) 
|->  C )  |`  ( M (,) N ) )  =  ( u  e.  ( M (,) N
)  |->  C ) )
11718, 116ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ( M [,] N )  |->  C )  |`  ( M (,) N ) )  =  ( u  e.  ( M (,) N ) 
|->  C )
118 rescncf 18880 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M (,) N ) 
C_  ( M [,] N )  ->  (
( u  e.  ( M [,] N ) 
|->  C )  e.  ( ( M [,] N
) -cn-> CC )  ->  (
( u  e.  ( M [,] N ) 
|->  C )  |`  ( M (,) N ) )  e.  ( ( M (,) N ) -cn-> CC ) ) )
11918, 74, 118mpsyl 61 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( u  e.  ( M [,] N
)  |->  C )  |`  ( M (,) N ) )  e.  ( ( M (,) N )
-cn-> CC ) )
120117, 119syl5eqelr 2489 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( u  e.  ( M (,) N ) 
|->  C )  e.  ( ( M (,) N
) -cn-> CC ) )
12196, 44, 41, 115, 120, 77ftc1cn 19880 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M [,] N )  |->  S. ( M (,) v
) ( ( u  e.  ( M (,) N )  |->  C ) `
 t )  _d t ) )  =  ( u  e.  ( M (,) N ) 
|->  C ) )
12230, 32syl6ss 3320 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M [,] N
)  C_  RR )
123 eqid 2404 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
124123tgioo2 18787 . . . . . . . . . . . . . . . . 17  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
125 iccntr 18805 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( M [,] N ) )  =  ( M (,) N
) )
12644, 41, 125syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( M [,] N ) )  =  ( M (,) N
) )
1276, 122, 80, 124, 123, 126dvmptntr 19810 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M [,] N )  |->  S. ( M (,) v
) C  _d u ) )  =  ( RR  _D  ( v  e.  ( M (,) N )  |->  S. ( M (,) v ) C  _d u ) ) )
12895, 121, 1273eqtr3rd 2445 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M (,) N )  |->  S. ( M (,) v
) C  _d u ) )  =  ( u  e.  ( M (,) N )  |->  C ) )
129128dmeqd 5031 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( RR  _D  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u ) )  =  dom  ( u  e.  ( M (,) N
)  |->  C ) )
13060, 89fmptd 5852 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( u  e.  ( M (,) N ) 
|->  C ) : ( M (,) N ) --> CC )
131 fdm 5554 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ( M (,) N )  |->  C ) : ( M (,) N ) --> CC 
->  dom  ( u  e.  ( M (,) N
)  |->  C )  =  ( M (,) N
) )
132130, 131syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( u  e.  ( M (,) N
)  |->  C )  =  ( M (,) N
) )
133129, 132eqtrd 2436 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  ( RR  _D  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u ) )  =  ( M (,) N
) )
134 dvcn 19760 . . . . . . . . . . . . 13  |-  ( ( ( RR  C_  CC  /\  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u ) : ( M (,) N ) --> CC  /\  ( M (,) N )  C_  RR )  /\  dom  ( RR  _D  ( v  e.  ( M (,) N
)  |->  S. ( M (,) v ) C  _d u ) )  =  ( M (,) N ) )  -> 
( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u )  e.  ( ( M (,) N
) -cn-> CC ) )
1356, 83, 84, 133, 134syl31anc 1187 . . . . . . . . . . . 12  |-  ( ph  ->  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u )  e.  ( ( M (,) N
) -cn-> CC ) )
13639, 135cncfco 18890 . . . . . . . . . . 11  |-  ( ph  ->  ( ( v  e.  ( M (,) N
)  |->  S. ( M (,) v ) C  _d u )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) )  e.  ( ( X [,] Y ) -cn-> CC ) )
13715, 136eqeltrrd 2479 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u )  e.  ( ( X [,] Y
) -cn-> CC ) )
138 cncff 18876 . . . . . . . . . 10  |-  ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u )  e.  ( ( X [,] Y )
-cn-> CC )  ->  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) : ( X [,] Y ) --> CC )
139137, 138syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u ) : ( X [,] Y ) --> CC )
140 eqid 2404 . . . . . . . . . 10  |-  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u )  =  ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u )
141140fmpt 5849 . . . . . . . . 9  |-  ( A. x  e.  ( X [,] Y ) S. ( M (,) A ) C  _d u  e.  CC  <->  ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) : ( X [,] Y
) --> CC )
142139, 141sylibr 204 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( X [,] Y ) S. ( M (,) A ) C  _d u  e.  CC )
143142r19.21bi 2764 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  S. ( M (,) A ) C  _d u  e.  CC )
144 iccntr 18805 . . . . . . . 8  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
1453, 4, 144syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
1466, 8, 143, 124, 123, 145dvmptntr 19810 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  S. ( M (,) A ) C  _d u ) ) )
147 reex 9037 . . . . . . . . 9  |-  RR  e.  _V
148147prid1 3872 . . . . . . . 8  |-  RR  e.  { RR ,  CC }
149148a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  { RR ,  CC } )
150 ioossicc 10952 . . . . . . . . 9  |-  ( X (,) Y )  C_  ( X [,] Y )
151150sseli 3304 . . . . . . . 8  |-  ( x  e.  ( X (,) Y )  ->  x  e.  ( X [,] Y
) )
152151, 9sylan2 461 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  ( M (,) N ) )
153 itgsubst.b . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L ^1 ) )
154 elin 3490 . . . . . . . . . . . 12  |-  ( ( x  e.  ( X (,) Y )  |->  B )  e.  ( ( ( X (,) Y
) -cn-> CC )  i^i  L ^1 )  <->  ( ( x  e.  ( X (,) Y )  |->  B )  e.  ( ( X (,) Y ) -cn-> CC )  /\  ( x  e.  ( X (,) Y )  |->  B )  e.  L ^1 ) )
155153, 154sylib 189 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  ( X (,) Y
)  |->  B )  e.  ( ( X (,) Y ) -cn-> CC )  /\  ( x  e.  ( X (,) Y
)  |->  B )  e.  L ^1 ) )
156155simpld 446 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( X (,) Y
) -cn-> CC ) )
157 cncff 18876 . . . . . . . . . 10  |-  ( ( x  e.  ( X (,) Y )  |->  B )  e.  ( ( X (,) Y )
-cn-> CC )  ->  (
x  e.  ( X (,) Y )  |->  B ) : ( X (,) Y ) --> CC )
158156, 157syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B ) : ( X (,) Y ) --> CC )
159 eqid 2404 . . . . . . . . . 10  |-  ( x  e.  ( X (,) Y )  |->  B )  =  ( x  e.  ( X (,) Y
)  |->  B )
160159fmpt 5849 . . . . . . . . 9  |-  ( A. x  e.  ( X (,) Y ) B  e.  CC  <->  ( x  e.  ( X (,) Y
)  |->  B ) : ( X (,) Y
) --> CC )
161158, 160sylibr 204 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( X (,) Y ) B  e.  CC )
162161r19.21bi 2764 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  B  e.  CC )
163 nfcv 2540 . . . . . . . . . . 11  |-  F/_ v C
164 nfcsb1v 3243 . . . . . . . . . . 11  |-  F/_ u [_ v  /  u ]_ C
165 csbeq1a 3219 . . . . . . . . . . 11  |-  ( u  =  v  ->  C  =  [_ v  /  u ]_ C )
166163, 164, 165cbvmpt 4259 . . . . . . . . . 10  |-  ( u  e.  ( M (,) N )  |->  C )  =  ( v  e.  ( M (,) N
)  |->  [_ v  /  u ]_ C )
167166fmpt 5849 . . . . . . . . 9  |-  ( A. v  e.  ( M (,) N ) [_ v  /  u ]_ C  e.  CC  <->  ( u  e.  ( M (,) N
)  |->  C ) : ( M (,) N
) --> CC )
168130, 167sylibr 204 . . . . . . . 8  |-  ( ph  ->  A. v  e.  ( M (,) N )
[_ v  /  u ]_ C  e.  CC )
169168r19.21bi 2764 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( M (,) N ) )  ->  [_ v  /  u ]_ C  e.  CC )
17032, 5sstri 3317 . . . . . . . . . 10  |-  ( Z (,) W )  C_  CC
171 cncff 18876 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( X [,] Y )  |->  A )  e.  ( ( X [,] Y )
-cn-> ( Z (,) W
) )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )
17236, 171syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( Z (,) W
) )
17316fmpt 5849 . . . . . . . . . . . 12  |-  ( A. x  e.  ( X [,] Y ) A  e.  ( Z (,) W
)  <->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( Z (,) W ) )
174172, 173sylibr 204 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  ( X [,] Y ) A  e.  ( Z (,) W ) )
175174r19.21bi 2764 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( Z (,) W ) )
176170, 175sseldi 3306 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  CC )
1776, 8, 176, 124, 123, 145dvmptntr 19810 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  A ) ) )
178 itgsubst.da . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
179177, 178eqtr3d 2438 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
180128, 166syl6eq 2452 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M (,) N )  |->  S. ( M (,) v
) C  _d u ) )  =  ( v  e.  ( M (,) N )  |->  [_ v  /  u ]_ C
) )
181 csbeq1 3214 . . . . . . 7  |-  ( v  =  A  ->  [_ v  /  u ]_ C  = 
[_ A  /  u ]_ C )
182149, 149, 152, 162, 81, 169, 179, 180, 14, 181dvmptco 19811 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  S. ( M (,) A
) C  _d u ) )  =  ( x  e.  ( X (,) Y )  |->  (
[_ A  /  u ]_ C  x.  B
) ) )
183 nfcvd 2541 . . . . . . . . . 10  |-  ( A  e.  ( M (,) N )  ->  F/_ u E )
184 itgsubst.e . . . . . . . . . 10  |-  ( u  =  A  ->  C  =  E )
185183, 184csbiegf 3251 . . . . . . . . 9  |-  ( A  e.  ( M (,) N )  ->  [_ A  /  u ]_ C  =  E )
186152, 185syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  [_ A  /  u ]_ C  =  E )
187186oveq1d 6055 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( [_ A  /  u ]_ C  x.  B )  =  ( E  x.  B ) )
188187mpteq2dva 4255 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( [_ A  /  u ]_ C  x.  B
) )  =  ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) ) )
189146, 182, 1883eqtrd 2440 . . . . 5  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  =  ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) ) )
190123mulcn 18850 . . . . . . 7  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
191190a1i 11 . . . . . 6  |-  ( ph  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
192 resmpt 5150 . . . . . . . 8  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  E )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y
)  |->  E ) )
193150, 192ax-mp 8 . . . . . . 7  |-  ( ( x  e.  ( X [,] Y )  |->  E )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y ) 
|->  E )
194 eqidd 2405 . . . . . . . . . 10  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  =  ( u  e.  ( Z (,) W )  |->  C ) )
195175, 10, 194, 184fmptco 5860 . . . . . . . . 9  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) )  =  ( x  e.  ( X [,] Y ) 
|->  E ) )
19636, 53cncfco 18890 . . . . . . . . 9  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) )  e.  ( ( X [,] Y ) -cn-> CC ) )
197195, 196eqeltrrd 2479 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  E )  e.  ( ( X [,] Y
) -cn-> CC ) )
198 rescncf 18880 . . . . . . . 8  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  E )  e.  ( ( X [,] Y
) -cn-> CC )  ->  (
( x  e.  ( X [,] Y ) 
|->  E )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y ) -cn-> CC ) ) )
199150, 197, 198mpsyl 61 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  E )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
200193, 199syl5eqelr 2489 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E )  e.  ( ( X (,) Y
) -cn-> CC ) )
201123, 191, 200, 156cncfmpt2f 18897 . . . . 5  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( E  x.  B
) )  e.  ( ( X (,) Y
) -cn-> CC ) )
202189, 201eqeltrd 2478 . . . 4  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  e.  ( ( X (,) Y
) -cn-> CC ) )
203 ioombl 19412 . . . . . . . 8  |-  ( X (,) Y )  e. 
dom  vol
204203a1i 11 . . . . . . 7  |-  ( ph  ->  ( X (,) Y
)  e.  dom  vol )
205 fco 5559 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ( Z (,) W ) 
|->  C ) : ( Z (,) W ) --> CC  /\  ( x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )  ->  ( ( u  e.  ( Z (,) W )  |->  C )  o.  ( x  e.  ( X [,] Y
)  |->  A ) ) : ( X [,] Y ) --> CC )
20655, 172, 205syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) ) : ( X [,] Y
) --> CC )
207195feq1d 5539 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( u  e.  ( Z (,) W )  |->  C )  o.  ( x  e.  ( X [,] Y
)  |->  A ) ) : ( X [,] Y ) --> CC  <->  ( x  e.  ( X [,] Y
)  |->  E ) : ( X [,] Y
) --> CC ) )
208206, 207mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  E ) : ( X [,] Y ) --> CC )
209 eqid 2404 . . . . . . . . . . 11  |-  ( x  e.  ( X [,] Y )  |->  E )  =  ( x  e.  ( X [,] Y
)  |->  E )
210209fmpt 5849 . . . . . . . . . 10  |-  ( A. x  e.  ( X [,] Y ) E  e.  CC  <->  ( x  e.  ( X [,] Y
)  |->  E ) : ( X [,] Y
) --> CC )
211208, 210sylibr 204 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  ( X [,] Y ) E  e.  CC )
212211r19.21bi 2764 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  E  e.  CC )
213151, 212sylan2 461 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  E  e.  CC )
214 eqidd 2405 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E )  =  ( x  e.  ( X (,) Y )  |->  E ) )
215 eqidd 2405 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  =  ( x  e.  ( X (,) Y )  |->  B ) )
216204, 213, 162, 214, 215offval2 6281 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X (,) Y
)  |->  E )  o F  x.  ( x  e.  ( X (,) Y )  |->  B ) )  =  ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) ) )
217189, 216eqtr4d 2439 . . . . 5  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  =  ( ( x  e.  ( X (,) Y ) 
|->  E )  o F  x.  ( x  e.  ( X (,) Y
)  |->  B ) ) )
218150a1i 11 . . . . . . . 8  |-  ( ph  ->  ( X (,) Y
)  C_  ( X [,] Y ) )
219 cniccibl 19685 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  Y  e.  RR  /\  (
x  e.  ( X [,] Y )  |->  E )  e.  ( ( X [,] Y )
-cn-> CC ) )  -> 
( x  e.  ( X [,] Y ) 
|->  E )  e.  L ^1 )
2203, 4, 197, 219syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  E )  e.  L ^1 )
221218, 204, 212, 220iblss 19649 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E )  e.  L ^1 )
222 iblmbf 19612 . . . . . . 7  |-  ( ( x  e.  ( X (,) Y )  |->  E )  e.  L ^1 
->  ( x  e.  ( X (,) Y ) 
|->  E )  e. MblFn )
223221, 222syl 16 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E )  e. MblFn )
224155simprd 450 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  L ^1 )
225 cniccbdd 19311 . . . . . . . 8  |-  ( ( X  e.  RR  /\  Y  e.  RR  /\  (
x  e.  ( X [,] Y )  |->  E )  e.  ( ( X [,] Y )
-cn-> CC ) )  ->  E. y  e.  RR  A. z  e.  ( X [,] Y ) ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y )
2263, 4, 197, 225syl3anc 1184 . . . . . . 7  |-  ( ph  ->  E. y  e.  RR  A. z  e.  ( X [,] Y ) ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y )
227 ssralv 3367 . . . . . . . . . 10  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  ( A. z  e.  ( X [,] Y ) ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y  ->  A. z  e.  ( X (,) Y ) ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y )
)
228150, 227ax-mp 8 . . . . . . . . 9  |-  ( A. z  e.  ( X [,] Y ) ( abs `  ( ( x  e.  ( X [,] Y
)  |->  E ) `  z ) )  <_ 
y  ->  A. z  e.  ( X (,) Y
) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y
)
229 eqid 2404 . . . . . . . . . . . . 13  |-  ( x  e.  ( X (,) Y )  |->  E )  =  ( x  e.  ( X (,) Y
)  |->  E )
230213, 229fmptd 5852 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E ) : ( X (,) Y ) --> CC )
231 fdm 5554 . . . . . . . . . . . 12  |-  ( ( x  e.  ( X (,) Y )  |->  E ) : ( X (,) Y ) --> CC 
->  dom  ( x  e.  ( X (,) Y
)  |->  E )  =  ( X (,) Y
) )
232230, 231syl 16 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( x  e.  ( X (,) Y
)  |->  E )  =  ( X (,) Y
) )
233232raleqdv 2870 . . . . . . . . . 10  |-  ( ph  ->  ( A. z  e. 
dom  ( x  e.  ( X (,) Y
)  |->  E ) ( abs `  ( ( x  e.  ( X (,) Y )  |->  E ) `  z ) )  <_  y  <->  A. z  e.  ( X (,) Y
) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
) )
234193fveq1i 5688 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ( X [,] Y ) 
|->  E )  |`  ( X (,) Y ) ) `
 z )  =  ( ( x  e.  ( X (,) Y
)  |->  E ) `  z )
235 fvres 5704 . . . . . . . . . . . . . 14  |-  ( z  e.  ( X (,) Y )  ->  (
( ( x  e.  ( X [,] Y
)  |->  E )  |`  ( X (,) Y ) ) `  z )  =  ( ( x  e.  ( X [,] Y )  |->  E ) `
 z ) )
236234, 235syl5eqr 2450 . . . . . . . . . . . . 13  |-  ( z  e.  ( X (,) Y )  ->  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
)  =  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )
237236fveq2d 5691 . . . . . . . . . . . 12  |-  ( z  e.  ( X (,) Y )  ->  ( abs `  ( ( x  e.  ( X (,) Y )  |->  E ) `
 z ) )  =  ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) ) )
238237breq1d 4182 . . . . . . . . . . 11  |-  ( z  e.  ( X (,) Y )  ->  (
( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y  <->  ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y )
)
239238ralbiia 2698 . . . . . . . . . 10  |-  ( A. z  e.  ( X (,) Y ) ( abs `  ( ( x  e.  ( X (,) Y
)  |->  E ) `  z ) )  <_ 
y  <->  A. z  e.  ( X (,) Y ) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y
)
240233, 239syl6rbb 254 . . . . . . . . 9  |-  ( ph  ->  ( A. z  e.  ( X (,) Y
) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y  <->  A. z  e.  dom  (
x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
) )
241228, 240syl5ib 211 . . . . . . . 8  |-  ( ph  ->  ( A. z  e.  ( X [,] Y
) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y  ->  A. z  e.  dom  ( x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
) )
242241reximdv 2777 . . . . . . 7  |-  ( ph  ->  ( E. y  e.  RR  A. z  e.  ( X [,] Y
) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y  ->  E. y  e.  RR  A. z  e.  dom  (
x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
) )
243226, 242mpd 15 . . . . . 6  |-  ( ph  ->  E. y  e.  RR  A. z  e.  dom  (
x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
)
244 bddmulibl 19683 . . . . . 6  |-  ( ( ( x  e.  ( X (,) Y ) 
|->  E )  e. MblFn  /\  (
x  e.  ( X (,) Y )  |->  B )  e.  L ^1 
/\  E. y  e.  RR  A. z  e.  dom  (
x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
)  ->  ( (
x  e.  ( X (,) Y )  |->  E )  o F  x.  ( x  e.  ( X (,) Y )  |->  B ) )  e.  L ^1 )
245223, 224, 243, 244syl3anc 1184 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( X (,) Y
)  |->  E )  o F  x.  ( x  e.  ( X (,) Y )  |->  B ) )  e.  L ^1 )
246217, 245eqeltrd 2478 . . . 4  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  e.  L ^1 )
2473, 4, 1, 202, 246, 137ftc2 19881 . . 3  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  t )  _d t  =  ( ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  Y )  -  (
( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u ) `  X
) ) )
248 fveq2 5687 . . . . 5  |-  ( t  =  x  ->  (
( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  t
)  =  ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  x ) )
249 nfcv 2540 . . . . . . 7  |-  F/_ x RR
250 nfcv 2540 . . . . . . 7  |-  F/_ x  _D
251 nfmpt1 4258 . . . . . . 7  |-  F/_ x
( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u )
252249, 250, 251nfov 6063 . . . . . 6  |-  F/_ x
( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )
253 nfcv 2540 . . . . . 6  |-  F/_ x
t
254252, 253nffv 5694 . . . . 5  |-  F/_ x
( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  t
)
255 nfcv 2540 . . . . 5  |-  F/_ t
( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  x
)
256248, 254, 255cbvitg 19620 . . . 4  |-  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  t
)  _d t  =  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  x )  _d x
257189fveq1d 5689 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  x
)  =  ( ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) ) `  x ) )
258 ovex 6065 . . . . . . 7  |-  ( E  x.  B )  e. 
_V
259 eqid 2404 . . . . . . . 8  |-  ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) )  =  ( x  e.  ( X (,) Y
)  |->  ( E  x.  B ) )
260259fvmpt2 5771 . . . . . . 7  |-  ( ( x  e.  ( X (,) Y )  /\  ( E  x.  B
)  e.  _V )  ->  ( ( x  e.  ( X (,) Y
)  |->  ( E  x.  B ) ) `  x )  =  ( E  x.  B ) )
261258, 260mpan2 653 . . . . . 6  |-  ( x  e.  ( X (,) Y )  ->  (
( x  e.  ( X (,) Y ) 
|->  ( E  x.  B
) ) `  x
)  =  ( E  x.  B ) )
262257, 261sylan9eq 2456 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( RR  _D  ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) ) `
 x )  =  ( E  x.  B
) )
263262itgeq2dv 19626 . . . 4  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  x )  _d x  =  S. ( X (,) Y
) ( E  x.  B )  _d x )
264256, 263syl5eq 2448 . . 3  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  t )  _d t  =  S. ( X (,) Y
) ( E  x.  B )  _d x )
26518, 9sseldi 3306 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( M [,] N ) )
266 elicc2 10931 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( A  e.  ( M [,] N )  <-> 
( A  e.  RR  /\  M  <_  A  /\  A  <_  N ) ) )
26744, 41, 266syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  e.  ( M [,] N )  <-> 
( A  e.  RR  /\  M  <_  A  /\  A  <_  N ) ) )
268267adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( A  e.  ( M [,] N
)  <->  ( A  e.  RR  /\  M  <_  A  /\  A  <_  N
) ) )
269265, 268mpbid 202 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( A  e.  RR  /\  M  <_  A  /\  A  <_  N
) )
270269simp2d 970 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  M  <_  A )
271270ditgpos 19696 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  S__ [ M  ->  A ] C  _d u  =  S. ( M (,) A ) C  _d u )
272271mpteq2dva 4255 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  S__ [ M  ->  A ] C  _d u )  =  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) )
273272fveq1d 5689 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S__ [ M  ->  A ] C  _d u ) `  Y )  =  ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) `
 Y ) )
274 ubicc2 10970 . . . . . . . 8  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  Y  e.  ( X [,] Y
) )
27597, 98, 1, 274syl3anc 1184 . . . . . . 7  |-  ( ph  ->  Y  e.  ( X [,] Y ) )
276 itgsubst.l . . . . . . . . 9  |-  ( x  =  Y  ->  A  =  L )
277 ditgeq2 19689 . . . . . . . . 9  |-  ( A  =  L  ->  S__ [ M  ->  A ] C  _d u  =  S__
[ M  ->  L ] C  _d u
)
278276, 277syl 16 . . . . . . . 8  |-  ( x  =  Y  ->  S__ [ M  ->  A ] C  _d u  =  S__
[ M  ->  L ] C  _d u
)
279 eqid 2404 . . . . . . . 8  |-  ( x  e.  ( X [,] Y )  |->  S__ [ M  ->  A ] C  _d u )  =  ( x  e.  ( X [,] Y )  |->  S__
[ M  ->  A ] C  _d u
)
280 ditgex 19692 . . . . . . . 8  |-  S__ [ M  ->  L ] C  _d u  e.  _V
281278, 279, 280fvmpt 5765 . . . . . . 7  |-  ( Y  e.  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  S__ [ M  ->  A ] C  _d u ) `  Y )  =  S__ [ M  ->  L ] C  _d u )
282275, 281syl 16 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S__ [ M  ->  A ] C  _d u ) `  Y )  =  S__ [ M  ->  L ] C  _d u )
283273, 282eqtr3d 2438 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  Y )  =  S__
[ M  ->  L ] C  _d u
)
284272fveq1d 5689 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S__ [ M  ->  A ] C  _d u ) `  X )  =  ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) `
 X ) )
285 itgsubst.k . . . . . . . . 9  |-  ( x  =  X  ->  A  =  K )
286 ditgeq2 19689 . . . . . . . . 9  |-  ( A  =  K  ->  S__ [ M  ->  A ] C  _d u  =  S__
[ M  ->  K ] C  _d u
)
287285, 286syl 16 . . . . . . . 8  |-  ( x  =  X  ->  S__ [ M  ->  A ] C  _d u  =  S__
[ M  ->  K ] C  _d u
)
288 ditgex 19692 . . . . . . . 8  |-  S__ [ M  ->  K ] C  _d u  e.  _V
289287, 279, 288fvmpt 5765 . . . . . . 7  |-  ( X  e.  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  S__ [ M  ->  A ] C  _d u ) `  X )  =  S__ [ M  ->  K ] C  _d u )
290100, 289syl 16 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S__ [ M  ->  A ] C  _d u ) `  X )  =  S__ [ M  ->  K ] C  _d u )
291284, 290eqtr3d 2438 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  X )  =  S__
[ M  ->  K ] C  _d u
)
292283, 291oveq12d 6058 . . . 4  |-  ( ph  ->  ( ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) `
 Y )  -  ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  X ) )  =  ( S__ [ M  ->  L ] C  _d u  -  S__ [ M  ->  K ] C  _d u ) )
293 lbicc2 10969 . . . . . . 7  |-  ( ( M  e.  RR*  /\  N  e.  RR*  /\  M  <_  N )  ->  M  e.  ( M [,] N
) )
294109, 42, 115, 293syl3anc 1184 . . . . . 6  |-  ( ph  ->  M  e.  ( M [,] N ) )
295265ralrimiva 2749 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( X [,] Y ) A  e.  ( M [,] N ) )
296285eleq1d 2470 . . . . . . . 8  |-  ( x  =  X  ->  ( A  e.  ( M [,] N )  <->  K  e.  ( M [,] N ) ) )
297296rspcv 3008 . . . . . . 7  |-  ( X  e.  ( X [,] Y )  ->  ( A. x  e.  ( X [,] Y ) A  e.  ( M [,] N )  ->  K  e.  ( M [,] N
) ) )
298100, 295, 297sylc 58 . . . . . 6  |-  ( ph  ->  K  e.  ( M [,] N ) )
299276eleq1d 2470 . . . . . . . 8  |-  ( x  =  Y  ->  ( A  e.  ( M [,] N )  <->  L  e.  ( M [,] N ) ) )
300299rspcv 3008 . . . . . . 7  |-  ( Y  e.  ( X [,] Y )  ->  ( A. x  e.  ( X [,] Y ) A  e.  ( M [,] N )  ->  L  e.  ( M [,] N
) ) )
301275, 295, 300sylc 58 . . . . . 6  |-  ( ph  ->  L  e.  ( M [,] N ) )
30244, 41, 294, 298, 301, 60, 77ditgsplit 19701 . . . . 5  |-  ( ph  ->  S__ [ M  ->  L ] C  _d u  =  ( S__ [ M  ->  K ] C  _d u  +  S__ [ K  ->  L ] C  _d u ) )
303302oveq1d 6055 . . . 4  |-  ( ph  ->  ( S__ [ M  ->  L ] C  _d u  -  S__ [ M  ->  K ] C  _d u )  =  ( ( S__ [ M  ->  K ] C  _d u  +  S__ [ K  ->  L ] C  _d u )  -  S__ [ M  ->  K ] C  _d u ) )
30444, 41, 294, 298, 60, 77ditgcl 19698 . . . . 5  |-  ( ph  ->  S__ [ M  ->  K ] C  _d u  e.  CC )
30544, 41, 298, 301, 60, 77ditgcl 19698 . . . . 5  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  e.  CC )
306304, 305pncan2d 9369 . . . 4  |-  ( ph  ->  ( ( S__ [ M  ->  K ] C  _d u  +  S__ [ K  ->  L ] C  _d u )  -  S__ [ M  ->  K ] C  _d u
)  =  S__ [ K  ->  L ] C  _d u )
307292, 303, 3063eqtrd 2440 . . 3  |-  ( ph  ->  ( ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) `
 Y )  -  ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  X ) )  =  S__ [ K  ->  L ] C  _d u )
308247, 264, 3073eqtr3d 2444 . 2  |-  ( ph  ->  S. ( X (,) Y ) ( E  x.  B )  _d x  =  S__ [ K  ->  L ] C  _d u )
3092, 308eqtr2d 2437 1  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   _Vcvv 2916   [_csb 3211    i^i cin 3279    C_ wss 3280   (/)c0 3588   {cpr 3775   class class class wbr 4172    e. cmpt 4226   dom cdm 4837   ran crn 4838    |` cres 4839    o. ccom 4841   -->wf 5409   ` cfv 5413  (class class class)co 6040    o Fcof 6262   CCcc 8944   RRcr 8945    + caddc 8949    x. cmul 8951   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247   (,)cioo 10872   [,]cicc 10875   abscabs 11994   TopOpenctopn 13604   topGenctg 13620  ℂfldccnfld 16658   intcnt 17036    Cn ccn 17242    tX ctx 17545   -cn->ccncf 18859   volcvol 19313  MblFncmbf 19459   L ^1cibl 19462   S.citg 19463   S__cdit 19464    _D cdv 19703
This theorem is referenced by:  itgsubst  19886
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cc 8271  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ofr 6265  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-ovol 19314  df-vol 19315  df-mbf 19465  df-itg1 19466  df-itg2 19467  df-ibl 19468  df-itg 19469  df-ditg 19470  df-0p 19515  df-limc 19706  df-dv 19707
  Copyright terms: Public domain W3C validator