MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsubstlem Structured version   Unicode version

Theorem itgsubstlem 22615
Description: Lemma for itgsubst 22616. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
itgsubst.x  |-  ( ph  ->  X  e.  RR )
itgsubst.y  |-  ( ph  ->  Y  e.  RR )
itgsubst.le  |-  ( ph  ->  X  <_  Y )
itgsubst.z  |-  ( ph  ->  Z  e.  RR* )
itgsubst.w  |-  ( ph  ->  W  e.  RR* )
itgsubst.a  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
itgsubst.b  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
itgsubst.c  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC ) )
itgsubst.da  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
itgsubst.e  |-  ( u  =  A  ->  C  =  E )
itgsubst.k  |-  ( x  =  X  ->  A  =  K )
itgsubst.l  |-  ( x  =  Y  ->  A  =  L )
itgsubst.m  |-  ( ph  ->  M  e.  ( Z (,) W ) )
itgsubst.n  |-  ( ph  ->  N  e.  ( Z (,) W ) )
itgsubst.cl2  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( M (,) N ) )
Assertion
Ref Expression
itgsubstlem  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Distinct variable groups:    u, E    x, u, K    u, M, x    ph, u, x    u, X, x    u, Y, x   
u, A    x, C    u, W, x    u, L, x    u, N, x   
u, Z, x
Allowed substitution hints:    A( x)    B( x, u)    C( u)    E( x)

Proof of Theorem itgsubstlem
Dummy variables  y 
z  t  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgsubst.le . . 3  |-  ( ph  ->  X  <_  Y )
21ditgpos 22426 . 2  |-  ( ph  ->  S__ [ X  ->  Y ] ( E  x.  B )  _d x  =  S. ( X (,) Y ) ( E  x.  B )  _d x )
3 itgsubst.x . . . 4  |-  ( ph  ->  X  e.  RR )
4 itgsubst.y . . . 4  |-  ( ph  ->  Y  e.  RR )
5 ax-resscn 9538 . . . . . . . 8  |-  RR  C_  CC
65a1i 11 . . . . . . 7  |-  ( ph  ->  RR  C_  CC )
7 iccssre 11609 . . . . . . . 8  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X [,] Y
)  C_  RR )
83, 4, 7syl2anc 659 . . . . . . 7  |-  ( ph  ->  ( X [,] Y
)  C_  RR )
9 itgsubst.cl2 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( M (,) N ) )
10 eqidd 2455 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  =  ( x  e.  ( X [,] Y )  |->  A ) )
11 eqidd 2455 . . . . . . . . . . . 12  |-  ( ph  ->  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u )  =  ( v  e.  ( M (,) N )  |->  S. ( M (,) v
) C  _d u ) )
12 oveq2 6278 . . . . . . . . . . . . 13  |-  ( v  =  A  ->  ( M (,) v )  =  ( M (,) A
) )
13 itgeq1 22345 . . . . . . . . . . . . 13  |-  ( ( M (,) v )  =  ( M (,) A )  ->  S. ( M (,) v ) C  _d u  =  S. ( M (,) A ) C  _d u )
1412, 13syl 16 . . . . . . . . . . . 12  |-  ( v  =  A  ->  S. ( M (,) v ) C  _d u  =  S. ( M (,) A ) C  _d u )
159, 10, 11, 14fmptco 6040 . . . . . . . . . . 11  |-  ( ph  ->  ( ( v  e.  ( M (,) N
)  |->  S. ( M (,) v ) C  _d u )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) )  =  ( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u ) )
16 eqid 2454 . . . . . . . . . . . . . 14  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( x  e.  ( X [,] Y
)  |->  A )
179, 16fmptd 6031 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( M (,) N
) )
18 ioossicc 11613 . . . . . . . . . . . . . . . 16  |-  ( M (,) N )  C_  ( M [,] N )
19 itgsubst.z . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Z  e.  RR* )
20 itgsubst.w . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  W  e.  RR* )
21 itgsubst.m . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  e.  ( Z (,) W ) )
22 eliooord 11587 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  ( Z (,) W )  ->  ( Z  <  M  /\  M  <  W ) )
2321, 22syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( Z  <  M  /\  M  <  W ) )
2423simpld 457 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Z  <  M )
25 itgsubst.n . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  ( Z (,) W ) )
26 eliooord 11587 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ( Z (,) W )  ->  ( Z  <  N  /\  N  <  W ) )
2725, 26syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( Z  <  N  /\  N  <  W ) )
2827simprd 461 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  <  W )
29 iccssioo 11596 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Z  e.  RR*  /\  W  e.  RR* )  /\  ( Z  <  M  /\  N  <  W ) )  ->  ( M [,] N )  C_  ( Z (,) W ) )
3019, 20, 24, 28, 29syl22anc 1227 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M [,] N
)  C_  ( Z (,) W ) )
3118, 30syl5ss 3500 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M (,) N
)  C_  ( Z (,) W ) )
32 ioossre 11589 . . . . . . . . . . . . . . . . 17  |-  ( Z (,) W )  C_  RR
3332a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Z (,) W
)  C_  RR )
3433, 5syl6ss 3501 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Z (,) W
)  C_  CC )
3531, 34sstrd 3499 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M (,) N
)  C_  CC )
36 itgsubst.a . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
37 cncffvrn 21568 . . . . . . . . . . . . . 14  |-  ( ( ( M (,) N
)  C_  CC  /\  (
x  e.  ( X [,] Y )  |->  A )  e.  ( ( X [,] Y )
-cn-> ( Z (,) W
) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A )  e.  ( ( X [,] Y ) -cn-> ( M (,) N ) )  <-> 
( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( M (,) N
) ) )
3835, 36, 37syl2anc 659 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  A )  e.  ( ( X [,] Y ) -cn-> ( M (,) N ) )  <-> 
( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( M (,) N
) ) )
3917, 38mpbird 232 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( M (,) N ) ) )
4018sseli 3485 . . . . . . . . . . . . . . 15  |-  ( v  e.  ( M (,) N )  ->  v  e.  ( M [,] N
) )
4132, 25sseldi 3487 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  N  e.  RR )
4241rexrd 9632 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  RR* )
4342adantr 463 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  N  e.  RR* )
4432, 21sseldi 3487 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  M  e.  RR )
45 elicc2 11592 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( v  e.  ( M [,] N )  <-> 
( v  e.  RR  /\  M  <_  v  /\  v  <_  N ) ) )
4644, 41, 45syl2anc 659 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( v  e.  ( M [,] N )  <-> 
( v  e.  RR  /\  M  <_  v  /\  v  <_  N ) ) )
4746biimpa 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( v  e.  RR  /\  M  <_ 
v  /\  v  <_  N ) )
4847simp3d 1008 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  v  <_  N )
49 iooss2 11568 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  RR*  /\  v  <_  N )  ->  ( M (,) v )  C_  ( M (,) N ) )
5043, 48, 49syl2anc 659 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( M (,) v )  C_  ( M (,) N ) )
5150sselda 3489 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( M [,] N
) )  /\  u  e.  ( M (,) v
) )  ->  u  e.  ( M (,) N
) )
5231sselda 3489 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( M (,) N ) )  ->  u  e.  ( Z (,) W ) )
53 itgsubst.c . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC ) )
54 cncff 21563 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( u  e.  ( Z (,) W )  |->  C )  e.  ( ( Z (,) W )
-cn-> CC )  ->  (
u  e.  ( Z (,) W )  |->  C ) : ( Z (,) W ) --> CC )
5553, 54syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C ) : ( Z (,) W ) --> CC )
56 eqid 2454 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  e.  ( Z (,) W )  |->  C )  =  ( u  e.  ( Z (,) W
)  |->  C )
5756fmpt 6028 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. u  e.  ( Z (,) W ) C  e.  CC  <->  ( u  e.  ( Z (,) W
)  |->  C ) : ( Z (,) W
) --> CC )
5855, 57sylibr 212 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A. u  e.  ( Z (,) W ) C  e.  CC )
5958r19.21bi 2823 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( Z (,) W ) )  ->  C  e.  CC )
6052, 59syldan 468 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  ( M (,) N ) )  ->  C  e.  CC )
6160adantlr 712 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( M [,] N
) )  /\  u  e.  ( M (,) N
) )  ->  C  e.  CC )
6251, 61syldan 468 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  ( M [,] N
) )  /\  u  e.  ( M (,) v
) )  ->  C  e.  CC )
63 ioombl 22141 . . . . . . . . . . . . . . . . . 18  |-  ( M (,) v )  e. 
dom  vol
6463a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( M (,) v )  e.  dom  vol )
6518a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M (,) N
)  C_  ( M [,] N ) )
66 ioombl 22141 . . . . . . . . . . . . . . . . . . . 20  |-  ( M (,) N )  e. 
dom  vol
6766a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M (,) N
)  e.  dom  vol )
6830sselda 3489 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  ( M [,] N ) )  ->  u  e.  ( Z (,) W ) )
6968, 59syldan 468 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( M [,] N ) )  ->  C  e.  CC )
7030resmptd 5313 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  |`  ( M [,] N ) )  =  ( u  e.  ( M [,] N )  |->  C ) )
71 rescncf 21567 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M [,] N ) 
C_  ( Z (,) W )  ->  (
( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC )  ->  (
( u  e.  ( Z (,) W ) 
|->  C )  |`  ( M [,] N ) )  e.  ( ( M [,] N ) -cn-> CC ) ) )
7230, 53, 71sylc 60 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  |`  ( M [,] N ) )  e.  ( ( M [,] N )
-cn-> CC ) )
7370, 72eqeltrrd 2543 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( u  e.  ( M [,] N ) 
|->  C )  e.  ( ( M [,] N
) -cn-> CC ) )
74 cniccibl 22413 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  (
u  e.  ( M [,] N )  |->  C )  e.  ( ( M [,] N )
-cn-> CC ) )  -> 
( u  e.  ( M [,] N ) 
|->  C )  e.  L^1 )
7544, 41, 73, 74syl3anc 1226 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( u  e.  ( M [,] N ) 
|->  C )  e.  L^1 )
7665, 67, 69, 75iblss 22377 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( u  e.  ( M (,) N ) 
|->  C )  e.  L^1 )
7776adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( u  e.  ( M (,) N
)  |->  C )  e.  L^1 )
7850, 64, 61, 77iblss 22377 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  ( u  e.  ( M (,) v
)  |->  C )  e.  L^1 )
7962, 78itgcl 22356 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  S. ( M (,) v ) C  _d u  e.  CC )
8040, 79sylan2 472 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( M (,) N ) )  ->  S. ( M (,) v ) C  _d u  e.  CC )
81 eqid 2454 . . . . . . . . . . . . . 14  |-  ( v  e.  ( M (,) N )  |->  S. ( M (,) v ) C  _d u )  =  ( v  e.  ( M (,) N
)  |->  S. ( M (,) v ) C  _d u )
8280, 81fmptd 6031 . . . . . . . . . . . . 13  |-  ( ph  ->  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u ) : ( M (,) N ) --> CC )
8331, 32syl6ss 3501 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M (,) N
)  C_  RR )
84 fveq2 5848 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  u  ->  (
( u  e.  ( M (,) N ) 
|->  C ) `  t
)  =  ( ( u  e.  ( M (,) N )  |->  C ) `  u ) )
85 nffvmpt1 5856 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ u
( ( u  e.  ( M (,) N
)  |->  C ) `  t )
86 nfcv 2616 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ t
( ( u  e.  ( M (,) N
)  |->  C ) `  u )
8784, 85, 86cbvitg 22348 . . . . . . . . . . . . . . . . . . 19  |-  S. ( M (,) v ) ( ( u  e.  ( M (,) N
)  |->  C ) `  t )  _d t  =  S. ( M (,) v ) ( ( u  e.  ( M (,) N ) 
|->  C ) `  u
)  _d u
88 eqid 2454 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  e.  ( M (,) N )  |->  C )  =  ( u  e.  ( M (,) N
)  |->  C )
8988fvmpt2 5939 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( u  e.  ( M (,) N )  /\  C  e.  CC )  ->  ( ( u  e.  ( M (,) N
)  |->  C ) `  u )  =  C )
9051, 62, 89syl2anc 659 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  v  e.  ( M [,] N
) )  /\  u  e.  ( M (,) v
) )  ->  (
( u  e.  ( M (,) N ) 
|->  C ) `  u
)  =  C )
9190itgeq2dv 22354 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  S. ( M (,) v ) ( ( u  e.  ( M (,) N ) 
|->  C ) `  u
)  _d u  =  S. ( M (,) v ) C  _d u )
9287, 91syl5eq 2507 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  v  e.  ( M [,] N ) )  ->  S. ( M (,) v ) ( ( u  e.  ( M (,) N ) 
|->  C ) `  t
)  _d t  =  S. ( M (,) v ) C  _d u )
9392mpteq2dva 4525 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( v  e.  ( M [,] N ) 
|->  S. ( M (,) v ) ( ( u  e.  ( M (,) N )  |->  C ) `  t )  _d t )  =  ( v  e.  ( M [,] N ) 
|->  S. ( M (,) v ) C  _d u ) )
9493oveq2d 6286 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M [,] N )  |->  S. ( M (,) v
) ( ( u  e.  ( M (,) N )  |->  C ) `
 t )  _d t ) )  =  ( RR  _D  (
v  e.  ( M [,] N )  |->  S. ( M (,) v
) C  _d u ) ) )
95 eqid 2454 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( M [,] N )  |->  S. ( M (,) v ) ( ( u  e.  ( M (,) N
)  |->  C ) `  t )  _d t )  =  ( v  e.  ( M [,] N )  |->  S. ( M (,) v ) ( ( u  e.  ( M (,) N
)  |->  C ) `  t )  _d t )
963rexrd 9632 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  X  e.  RR* )
974rexrd 9632 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  Y  e.  RR* )
98 lbicc2 11639 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  X  e.  ( X [,] Y
) )
9996, 97, 1, 98syl3anc 1226 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  X  e.  ( X [,] Y ) )
100 n0i 3788 . . . . . . . . . . . . . . . . . . . . 21  |-  ( X  e.  ( X [,] Y )  ->  -.  ( X [,] Y )  =  (/) )
10199, 100syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  -.  ( X [,] Y )  =  (/) )
102 feq3 5697 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M (,) N )  =  (/)  ->  ( ( x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( M (,) N )  <-> 
( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) -->
(/) ) )
10317, 102syl5ibcom 220 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( M (,) N )  =  (/)  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) -->
(/) ) )
104 f00 5749 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> (/)  <->  (
( x  e.  ( X [,] Y ) 
|->  A )  =  (/)  /\  ( X [,] Y
)  =  (/) ) )
105104simprbi 462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> (/)  ->  ( X [,] Y
)  =  (/) )
106103, 105syl6 33 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( M (,) N )  =  (/)  ->  ( X [,] Y
)  =  (/) ) )
107101, 106mtod 177 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  -.  ( M (,) N )  =  (/) )
10844rexrd 9632 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  RR* )
109 ioo0 11557 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  RR*  /\  N  e.  RR* )  ->  (
( M (,) N
)  =  (/)  <->  N  <_  M ) )
110108, 42, 109syl2anc 659 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( M (,) N )  =  (/)  <->  N  <_  M ) )
111107, 110mtbid 298 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  -.  N  <_  M
)
11241, 44letrid 9724 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( N  <_  M  \/  M  <_  N ) )
113112ord 375 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( -.  N  <_  M  ->  M  <_  N
) )
114111, 113mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  <_  N )
115 resmpt 5311 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M (,) N ) 
C_  ( M [,] N )  ->  (
( u  e.  ( M [,] N ) 
|->  C )  |`  ( M (,) N ) )  =  ( u  e.  ( M (,) N
)  |->  C ) )
11618, 115ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ( M [,] N )  |->  C )  |`  ( M (,) N ) )  =  ( u  e.  ( M (,) N ) 
|->  C )
117 rescncf 21567 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M (,) N ) 
C_  ( M [,] N )  ->  (
( u  e.  ( M [,] N ) 
|->  C )  e.  ( ( M [,] N
) -cn-> CC )  ->  (
( u  e.  ( M [,] N ) 
|->  C )  |`  ( M (,) N ) )  e.  ( ( M (,) N ) -cn-> CC ) ) )
11818, 73, 117mpsyl 63 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( u  e.  ( M [,] N
)  |->  C )  |`  ( M (,) N ) )  e.  ( ( M (,) N )
-cn-> CC ) )
119116, 118syl5eqelr 2547 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( u  e.  ( M (,) N ) 
|->  C )  e.  ( ( M (,) N
) -cn-> CC ) )
12095, 44, 41, 114, 119, 76ftc1cn 22610 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M [,] N )  |->  S. ( M (,) v
) ( ( u  e.  ( M (,) N )  |->  C ) `
 t )  _d t ) )  =  ( u  e.  ( M (,) N ) 
|->  C ) )
12130, 32syl6ss 3501 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M [,] N
)  C_  RR )
122 eqid 2454 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
123122tgioo2 21474 . . . . . . . . . . . . . . . . 17  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
124 iccntr 21492 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( M [,] N ) )  =  ( M (,) N
) )
12544, 41, 124syl2anc 659 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( M [,] N ) )  =  ( M (,) N
) )
1266, 121, 79, 123, 122, 125dvmptntr 22540 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M [,] N )  |->  S. ( M (,) v
) C  _d u ) )  =  ( RR  _D  ( v  e.  ( M (,) N )  |->  S. ( M (,) v ) C  _d u ) ) )
12794, 120, 1263eqtr3rd 2504 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M (,) N )  |->  S. ( M (,) v
) C  _d u ) )  =  ( u  e.  ( M (,) N )  |->  C ) )
128127dmeqd 5194 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( RR  _D  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u ) )  =  dom  ( u  e.  ( M (,) N
)  |->  C ) )
12988, 60dmmptd 5693 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( u  e.  ( M (,) N
)  |->  C )  =  ( M (,) N
) )
130128, 129eqtrd 2495 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  ( RR  _D  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u ) )  =  ( M (,) N
) )
131 dvcn 22490 . . . . . . . . . . . . 13  |-  ( ( ( RR  C_  CC  /\  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u ) : ( M (,) N ) --> CC  /\  ( M (,) N )  C_  RR )  /\  dom  ( RR  _D  ( v  e.  ( M (,) N
)  |->  S. ( M (,) v ) C  _d u ) )  =  ( M (,) N ) )  -> 
( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u )  e.  ( ( M (,) N
) -cn-> CC ) )
1326, 82, 83, 130, 131syl31anc 1229 . . . . . . . . . . . 12  |-  ( ph  ->  ( v  e.  ( M (,) N ) 
|->  S. ( M (,) v ) C  _d u )  e.  ( ( M (,) N
) -cn-> CC ) )
13339, 132cncfco 21577 . . . . . . . . . . 11  |-  ( ph  ->  ( ( v  e.  ( M (,) N
)  |->  S. ( M (,) v ) C  _d u )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) )  e.  ( ( X [,] Y ) -cn-> CC ) )
13415, 133eqeltrrd 2543 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u )  e.  ( ( X [,] Y
) -cn-> CC ) )
135 cncff 21563 . . . . . . . . . 10  |-  ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u )  e.  ( ( X [,] Y )
-cn-> CC )  ->  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) : ( X [,] Y ) --> CC )
136134, 135syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u ) : ( X [,] Y ) --> CC )
137 eqid 2454 . . . . . . . . . 10  |-  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u )  =  ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u )
138137fmpt 6028 . . . . . . . . 9  |-  ( A. x  e.  ( X [,] Y ) S. ( M (,) A ) C  _d u  e.  CC  <->  ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) : ( X [,] Y
) --> CC )
139136, 138sylibr 212 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( X [,] Y ) S. ( M (,) A ) C  _d u  e.  CC )
140139r19.21bi 2823 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  S. ( M (,) A ) C  _d u  e.  CC )
141 iccntr 21492 . . . . . . . 8  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
1423, 4, 141syl2anc 659 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
1436, 8, 140, 123, 122, 142dvmptntr 22540 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  S. ( M (,) A ) C  _d u ) ) )
144 reelprrecn 9573 . . . . . . . 8  |-  RR  e.  { RR ,  CC }
145144a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  { RR ,  CC } )
146 ioossicc 11613 . . . . . . . . 9  |-  ( X (,) Y )  C_  ( X [,] Y )
147146sseli 3485 . . . . . . . 8  |-  ( x  e.  ( X (,) Y )  ->  x  e.  ( X [,] Y
) )
148147, 9sylan2 472 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  ( M (,) N ) )
149 itgsubst.b . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
150 elin 3673 . . . . . . . . . . . 12  |-  ( ( x  e.  ( X (,) Y )  |->  B )  e.  ( ( ( X (,) Y
) -cn-> CC )  i^i  L^1 )  <->  ( ( x  e.  ( X (,) Y )  |->  B )  e.  ( ( X (,) Y ) -cn-> CC )  /\  ( x  e.  ( X (,) Y )  |->  B )  e.  L^1 ) )
151149, 150sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  ( X (,) Y
)  |->  B )  e.  ( ( X (,) Y ) -cn-> CC )  /\  ( x  e.  ( X (,) Y
)  |->  B )  e.  L^1 ) )
152151simpld 457 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( X (,) Y
) -cn-> CC ) )
153 cncff 21563 . . . . . . . . . 10  |-  ( ( x  e.  ( X (,) Y )  |->  B )  e.  ( ( X (,) Y )
-cn-> CC )  ->  (
x  e.  ( X (,) Y )  |->  B ) : ( X (,) Y ) --> CC )
154152, 153syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B ) : ( X (,) Y ) --> CC )
155 eqid 2454 . . . . . . . . . 10  |-  ( x  e.  ( X (,) Y )  |->  B )  =  ( x  e.  ( X (,) Y
)  |->  B )
156155fmpt 6028 . . . . . . . . 9  |-  ( A. x  e.  ( X (,) Y ) B  e.  CC  <->  ( x  e.  ( X (,) Y
)  |->  B ) : ( X (,) Y
) --> CC )
157154, 156sylibr 212 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( X (,) Y ) B  e.  CC )
158157r19.21bi 2823 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  B  e.  CC )
15960, 88fmptd 6031 . . . . . . . . 9  |-  ( ph  ->  ( u  e.  ( M (,) N ) 
|->  C ) : ( M (,) N ) --> CC )
160 nfcv 2616 . . . . . . . . . . 11  |-  F/_ v C
161 nfcsb1v 3436 . . . . . . . . . . 11  |-  F/_ u [_ v  /  u ]_ C
162 csbeq1a 3429 . . . . . . . . . . 11  |-  ( u  =  v  ->  C  =  [_ v  /  u ]_ C )
163160, 161, 162cbvmpt 4529 . . . . . . . . . 10  |-  ( u  e.  ( M (,) N )  |->  C )  =  ( v  e.  ( M (,) N
)  |->  [_ v  /  u ]_ C )
164163fmpt 6028 . . . . . . . . 9  |-  ( A. v  e.  ( M (,) N ) [_ v  /  u ]_ C  e.  CC  <->  ( u  e.  ( M (,) N
)  |->  C ) : ( M (,) N
) --> CC )
165159, 164sylibr 212 . . . . . . . 8  |-  ( ph  ->  A. v  e.  ( M (,) N )
[_ v  /  u ]_ C  e.  CC )
166165r19.21bi 2823 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( M (,) N ) )  ->  [_ v  /  u ]_ C  e.  CC )
16732, 5sstri 3498 . . . . . . . . . 10  |-  ( Z (,) W )  C_  CC
168 cncff 21563 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( X [,] Y )  |->  A )  e.  ( ( X [,] Y )
-cn-> ( Z (,) W
) )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )
16936, 168syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( Z (,) W
) )
17016fmpt 6028 . . . . . . . . . . . 12  |-  ( A. x  e.  ( X [,] Y ) A  e.  ( Z (,) W
)  <->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( Z (,) W ) )
171169, 170sylibr 212 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  ( X [,] Y ) A  e.  ( Z (,) W ) )
172171r19.21bi 2823 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( Z (,) W ) )
173167, 172sseldi 3487 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  CC )
1746, 8, 173, 123, 122, 142dvmptntr 22540 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  A ) ) )
175 itgsubst.da . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
176174, 175eqtr3d 2497 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
177127, 163syl6eq 2511 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
v  e.  ( M (,) N )  |->  S. ( M (,) v
) C  _d u ) )  =  ( v  e.  ( M (,) N )  |->  [_ v  /  u ]_ C
) )
178 csbeq1 3423 . . . . . . 7  |-  ( v  =  A  ->  [_ v  /  u ]_ C  = 
[_ A  /  u ]_ C )
179145, 145, 148, 158, 80, 166, 176, 177, 14, 178dvmptco 22541 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  S. ( M (,) A
) C  _d u ) )  =  ( x  e.  ( X (,) Y )  |->  (
[_ A  /  u ]_ C  x.  B
) ) )
180 nfcvd 2617 . . . . . . . . . 10  |-  ( A  e.  ( M (,) N )  ->  F/_ u E )
181 itgsubst.e . . . . . . . . . 10  |-  ( u  =  A  ->  C  =  E )
182180, 181csbiegf 3444 . . . . . . . . 9  |-  ( A  e.  ( M (,) N )  ->  [_ A  /  u ]_ C  =  E )
183148, 182syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  [_ A  /  u ]_ C  =  E )
184183oveq1d 6285 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( [_ A  /  u ]_ C  x.  B )  =  ( E  x.  B ) )
185184mpteq2dva 4525 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( [_ A  /  u ]_ C  x.  B
) )  =  ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) ) )
186143, 179, 1853eqtrd 2499 . . . . 5  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  =  ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) ) )
187 resmpt 5311 . . . . . . . 8  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  E )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y
)  |->  E ) )
188146, 187ax-mp 5 . . . . . . 7  |-  ( ( x  e.  ( X [,] Y )  |->  E )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y ) 
|->  E )
189 eqidd 2455 . . . . . . . . . 10  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  =  ( u  e.  ( Z (,) W )  |->  C ) )
190172, 10, 189, 181fmptco 6040 . . . . . . . . 9  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) )  =  ( x  e.  ( X [,] Y ) 
|->  E ) )
19136, 53cncfco 21577 . . . . . . . . 9  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) )  e.  ( ( X [,] Y ) -cn-> CC ) )
192190, 191eqeltrrd 2543 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  E )  e.  ( ( X [,] Y
) -cn-> CC ) )
193 rescncf 21567 . . . . . . . 8  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  E )  e.  ( ( X [,] Y
) -cn-> CC )  ->  (
( x  e.  ( X [,] Y ) 
|->  E )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y ) -cn-> CC ) ) )
194146, 192, 193mpsyl 63 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  E )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
195188, 194syl5eqelr 2547 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E )  e.  ( ( X (,) Y
) -cn-> CC ) )
196195, 152mulcncf 22025 . . . . 5  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( E  x.  B
) )  e.  ( ( X (,) Y
) -cn-> CC ) )
197186, 196eqeltrd 2542 . . . 4  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  e.  ( ( X (,) Y
) -cn-> CC ) )
198 ioombl 22141 . . . . . . . 8  |-  ( X (,) Y )  e. 
dom  vol
199198a1i 11 . . . . . . 7  |-  ( ph  ->  ( X (,) Y
)  e.  dom  vol )
200 fco 5723 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ( Z (,) W ) 
|->  C ) : ( Z (,) W ) --> CC  /\  ( x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )  ->  ( ( u  e.  ( Z (,) W )  |->  C )  o.  ( x  e.  ( X [,] Y
)  |->  A ) ) : ( X [,] Y ) --> CC )
20155, 169, 200syl2anc 659 . . . . . . . . . . 11  |-  ( ph  ->  ( ( u  e.  ( Z (,) W
)  |->  C )  o.  ( x  e.  ( X [,] Y ) 
|->  A ) ) : ( X [,] Y
) --> CC )
202190feq1d 5699 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( u  e.  ( Z (,) W )  |->  C )  o.  ( x  e.  ( X [,] Y
)  |->  A ) ) : ( X [,] Y ) --> CC  <->  ( x  e.  ( X [,] Y
)  |->  E ) : ( X [,] Y
) --> CC ) )
203201, 202mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  E ) : ( X [,] Y ) --> CC )
204 eqid 2454 . . . . . . . . . . 11  |-  ( x  e.  ( X [,] Y )  |->  E )  =  ( x  e.  ( X [,] Y
)  |->  E )
205204fmpt 6028 . . . . . . . . . 10  |-  ( A. x  e.  ( X [,] Y ) E  e.  CC  <->  ( x  e.  ( X [,] Y
)  |->  E ) : ( X [,] Y
) --> CC )
206203, 205sylibr 212 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  ( X [,] Y ) E  e.  CC )
207206r19.21bi 2823 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  E  e.  CC )
208147, 207sylan2 472 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  E  e.  CC )
209 eqidd 2455 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E )  =  ( x  e.  ( X (,) Y )  |->  E ) )
210 eqidd 2455 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  =  ( x  e.  ( X (,) Y )  |->  B ) )
211199, 208, 158, 209, 210offval2 6529 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X (,) Y
)  |->  E )  oF  x.  ( x  e.  ( X (,) Y )  |->  B ) )  =  ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) ) )
212186, 211eqtr4d 2498 . . . . 5  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  =  ( ( x  e.  ( X (,) Y ) 
|->  E )  oF  x.  ( x  e.  ( X (,) Y
)  |->  B ) ) )
213146a1i 11 . . . . . . . 8  |-  ( ph  ->  ( X (,) Y
)  C_  ( X [,] Y ) )
214 cniccibl 22413 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  Y  e.  RR  /\  (
x  e.  ( X [,] Y )  |->  E )  e.  ( ( X [,] Y )
-cn-> CC ) )  -> 
( x  e.  ( X [,] Y ) 
|->  E )  e.  L^1 )
2153, 4, 192, 214syl3anc 1226 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  E )  e.  L^1 )
216213, 199, 207, 215iblss 22377 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E )  e.  L^1 )
217 iblmbf 22340 . . . . . . 7  |-  ( ( x  e.  ( X (,) Y )  |->  E )  e.  L^1 
->  ( x  e.  ( X (,) Y ) 
|->  E )  e. MblFn )
218216, 217syl 16 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  E )  e. MblFn )
219151simprd 461 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  L^1 )
220 cniccbdd 22039 . . . . . . . 8  |-  ( ( X  e.  RR  /\  Y  e.  RR  /\  (
x  e.  ( X [,] Y )  |->  E )  e.  ( ( X [,] Y )
-cn-> CC ) )  ->  E. y  e.  RR  A. z  e.  ( X [,] Y ) ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y )
2213, 4, 192, 220syl3anc 1226 . . . . . . 7  |-  ( ph  ->  E. y  e.  RR  A. z  e.  ( X [,] Y ) ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y )
222 ssralv 3550 . . . . . . . . . 10  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  ( A. z  e.  ( X [,] Y ) ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y  ->  A. z  e.  ( X (,) Y ) ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y )
)
223146, 222ax-mp 5 . . . . . . . . 9  |-  ( A. z  e.  ( X [,] Y ) ( abs `  ( ( x  e.  ( X [,] Y
)  |->  E ) `  z ) )  <_ 
y  ->  A. z  e.  ( X (,) Y
) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y
)
224 eqid 2454 . . . . . . . . . . . 12  |-  ( x  e.  ( X (,) Y )  |->  E )  =  ( x  e.  ( X (,) Y
)  |->  E )
225224, 208dmmptd 5693 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( x  e.  ( X (,) Y
)  |->  E )  =  ( X (,) Y
) )
226225raleqdv 3057 . . . . . . . . . 10  |-  ( ph  ->  ( A. z  e. 
dom  ( x  e.  ( X (,) Y
)  |->  E ) ( abs `  ( ( x  e.  ( X (,) Y )  |->  E ) `  z ) )  <_  y  <->  A. z  e.  ( X (,) Y
) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
) )
227188fveq1i 5849 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ( X [,] Y ) 
|->  E )  |`  ( X (,) Y ) ) `
 z )  =  ( ( x  e.  ( X (,) Y
)  |->  E ) `  z )
228 fvres 5862 . . . . . . . . . . . . . 14  |-  ( z  e.  ( X (,) Y )  ->  (
( ( x  e.  ( X [,] Y
)  |->  E )  |`  ( X (,) Y ) ) `  z )  =  ( ( x  e.  ( X [,] Y )  |->  E ) `
 z ) )
229227, 228syl5eqr 2509 . . . . . . . . . . . . 13  |-  ( z  e.  ( X (,) Y )  ->  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
)  =  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )
230229fveq2d 5852 . . . . . . . . . . . 12  |-  ( z  e.  ( X (,) Y )  ->  ( abs `  ( ( x  e.  ( X (,) Y )  |->  E ) `
 z ) )  =  ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) ) )
231230breq1d 4449 . . . . . . . . . . 11  |-  ( z  e.  ( X (,) Y )  ->  (
( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y  <->  ( abs `  ( ( x  e.  ( X [,] Y )  |->  E ) `  z ) )  <_  y )
)
232231ralbiia 2884 . . . . . . . . . 10  |-  ( A. z  e.  ( X (,) Y ) ( abs `  ( ( x  e.  ( X (,) Y
)  |->  E ) `  z ) )  <_ 
y  <->  A. z  e.  ( X (,) Y ) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y
)
233226, 232syl6rbb 262 . . . . . . . . 9  |-  ( ph  ->  ( A. z  e.  ( X (,) Y
) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y  <->  A. z  e.  dom  (
x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
) )
234223, 233syl5ib 219 . . . . . . . 8  |-  ( ph  ->  ( A. z  e.  ( X [,] Y
) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y  ->  A. z  e.  dom  ( x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
) )
235234reximdv 2928 . . . . . . 7  |-  ( ph  ->  ( E. y  e.  RR  A. z  e.  ( X [,] Y
) ( abs `  (
( x  e.  ( X [,] Y ) 
|->  E ) `  z
) )  <_  y  ->  E. y  e.  RR  A. z  e.  dom  (
x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
) )
236221, 235mpd 15 . . . . . 6  |-  ( ph  ->  E. y  e.  RR  A. z  e.  dom  (
x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
)
237 bddmulibl 22411 . . . . . 6  |-  ( ( ( x  e.  ( X (,) Y ) 
|->  E )  e. MblFn  /\  (
x  e.  ( X (,) Y )  |->  B )  e.  L^1 
/\  E. y  e.  RR  A. z  e.  dom  (
x  e.  ( X (,) Y )  |->  E ) ( abs `  (
( x  e.  ( X (,) Y ) 
|->  E ) `  z
) )  <_  y
)  ->  ( (
x  e.  ( X (,) Y )  |->  E )  oF  x.  ( x  e.  ( X (,) Y ) 
|->  B ) )  e.  L^1 )
238218, 219, 236, 237syl3anc 1226 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( X (,) Y
)  |->  E )  oF  x.  ( x  e.  ( X (,) Y )  |->  B ) )  e.  L^1 )
239212, 238eqeltrd 2542 . . . 4  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )  e.  L^1 )
2403, 4, 1, 197, 239, 134ftc2 22611 . . 3  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  t )  _d t  =  ( ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  Y )  -  (
( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u ) `  X
) ) )
241 fveq2 5848 . . . . 5  |-  ( t  =  x  ->  (
( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  t
)  =  ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  x ) )
242 nfcv 2616 . . . . . . 7  |-  F/_ x RR
243 nfcv 2616 . . . . . . 7  |-  F/_ x  _D
244 nfmpt1 4528 . . . . . . 7  |-  F/_ x
( x  e.  ( X [,] Y ) 
|->  S. ( M (,) A ) C  _d u )
245242, 243, 244nfov 6296 . . . . . 6  |-  F/_ x
( RR  _D  (
x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) )
246 nfcv 2616 . . . . . 6  |-  F/_ x
t
247245, 246nffv 5855 . . . . 5  |-  F/_ x
( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  t
)
248 nfcv 2616 . . . . 5  |-  F/_ t
( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  x
)
249241, 247, 248cbvitg 22348 . . . 4  |-  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  t
)  _d t  =  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  x )  _d x
250186fveq1d 5850 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A
) C  _d u ) ) `  x
)  =  ( ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) ) `  x ) )
251 ovex 6298 . . . . . . 7  |-  ( E  x.  B )  e. 
_V
252 eqid 2454 . . . . . . . 8  |-  ( x  e.  ( X (,) Y )  |->  ( E  x.  B ) )  =  ( x  e.  ( X (,) Y
)  |->  ( E  x.  B ) )
253252fvmpt2 5939 . . . . . . 7  |-  ( ( x  e.  ( X (,) Y )  /\  ( E  x.  B
)  e.  _V )  ->  ( ( x  e.  ( X (,) Y
)  |->  ( E  x.  B ) ) `  x )  =  ( E  x.  B ) )
254251, 253mpan2 669 . . . . . 6  |-  ( x  e.  ( X (,) Y )  ->  (
( x  e.  ( X (,) Y ) 
|->  ( E  x.  B
) ) `  x
)  =  ( E  x.  B ) )
255250, 254sylan9eq 2515 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( RR  _D  ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) ) `
 x )  =  ( E  x.  B
) )
256255itgeq2dv 22354 . . . 4  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  x )  _d x  =  S. ( X (,) Y
) ( E  x.  B )  _d x )
257249, 256syl5eq 2507 . . 3  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) ) `  t )  _d t  =  S. ( X (,) Y
) ( E  x.  B )  _d x )
25818, 9sseldi 3487 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( M [,] N ) )
259 elicc2 11592 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( A  e.  ( M [,] N )  <-> 
( A  e.  RR  /\  M  <_  A  /\  A  <_  N ) ) )
26044, 41, 259syl2anc 659 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  e.  ( M [,] N )  <-> 
( A  e.  RR  /\  M  <_  A  /\  A  <_  N ) ) )
261260adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( A  e.  ( M [,] N
)  <->  ( A  e.  RR  /\  M  <_  A  /\  A  <_  N
) ) )
262258, 261mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( A  e.  RR  /\  M  <_  A  /\  A  <_  N
) )
263262simp2d 1007 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  M  <_  A )
264263ditgpos 22426 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  S__ [ M  ->  A ] C  _d u  =  S. ( M (,) A ) C  _d u )
265264mpteq2dva 4525 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  S__ [ M  ->  A ] C  _d u )  =  ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) )
266265fveq1d 5850 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S__ [ M  ->  A ] C  _d u ) `  Y )  =  ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) `
 Y ) )
267 ubicc2 11640 . . . . . . . 8  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  Y  e.  ( X [,] Y
) )
26896, 97, 1, 267syl3anc 1226 . . . . . . 7  |-  ( ph  ->  Y  e.  ( X [,] Y ) )
269 itgsubst.l . . . . . . . . 9  |-  ( x  =  Y  ->  A  =  L )
270 ditgeq2 22419 . . . . . . . . 9  |-  ( A  =  L  ->  S__ [ M  ->  A ] C  _d u  =  S__
[ M  ->  L ] C  _d u
)
271269, 270syl 16 . . . . . . . 8  |-  ( x  =  Y  ->  S__ [ M  ->  A ] C  _d u  =  S__
[ M  ->  L ] C  _d u
)
272 eqid 2454 . . . . . . . 8  |-  ( x  e.  ( X [,] Y )  |->  S__ [ M  ->  A ] C  _d u )  =  ( x  e.  ( X [,] Y )  |->  S__
[ M  ->  A ] C  _d u
)
273 ditgex 22422 . . . . . . . 8  |-  S__ [ M  ->  L ] C  _d u  e.  _V
274271, 272, 273fvmpt 5931 . . . . . . 7  |-  ( Y  e.  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  S__ [ M  ->  A ] C  _d u ) `  Y )  =  S__ [ M  ->  L ] C  _d u )
275268, 274syl 16 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S__ [ M  ->  A ] C  _d u ) `  Y )  =  S__ [ M  ->  L ] C  _d u )
276266, 275eqtr3d 2497 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  Y )  =  S__
[ M  ->  L ] C  _d u
)
277265fveq1d 5850 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S__ [ M  ->  A ] C  _d u ) `  X )  =  ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) `
 X ) )
278 itgsubst.k . . . . . . . . 9  |-  ( x  =  X  ->  A  =  K )
279 ditgeq2 22419 . . . . . . . . 9  |-  ( A  =  K  ->  S__ [ M  ->  A ] C  _d u  =  S__
[ M  ->  K ] C  _d u
)
280278, 279syl 16 . . . . . . . 8  |-  ( x  =  X  ->  S__ [ M  ->  A ] C  _d u  =  S__
[ M  ->  K ] C  _d u
)
281 ditgex 22422 . . . . . . . 8  |-  S__ [ M  ->  K ] C  _d u  e.  _V
282280, 272, 281fvmpt 5931 . . . . . . 7  |-  ( X  e.  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  S__ [ M  ->  A ] C  _d u ) `  X )  =  S__ [ M  ->  K ] C  _d u )
28399, 282syl 16 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S__ [ M  ->  A ] C  _d u ) `  X )  =  S__ [ M  ->  K ] C  _d u )
284277, 283eqtr3d 2497 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  X )  =  S__
[ M  ->  K ] C  _d u
)
285276, 284oveq12d 6288 . . . 4  |-  ( ph  ->  ( ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) `
 Y )  -  ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  X ) )  =  ( S__ [ M  ->  L ] C  _d u  -  S__ [ M  ->  K ] C  _d u ) )
286 lbicc2 11639 . . . . . . 7  |-  ( ( M  e.  RR*  /\  N  e.  RR*  /\  M  <_  N )  ->  M  e.  ( M [,] N
) )
287108, 42, 114, 286syl3anc 1226 . . . . . 6  |-  ( ph  ->  M  e.  ( M [,] N ) )
288258ralrimiva 2868 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( X [,] Y ) A  e.  ( M [,] N ) )
289278eleq1d 2523 . . . . . . . 8  |-  ( x  =  X  ->  ( A  e.  ( M [,] N )  <->  K  e.  ( M [,] N ) ) )
290289rspcv 3203 . . . . . . 7  |-  ( X  e.  ( X [,] Y )  ->  ( A. x  e.  ( X [,] Y ) A  e.  ( M [,] N )  ->  K  e.  ( M [,] N
) ) )
29199, 288, 290sylc 60 . . . . . 6  |-  ( ph  ->  K  e.  ( M [,] N ) )
292269eleq1d 2523 . . . . . . . 8  |-  ( x  =  Y  ->  ( A  e.  ( M [,] N )  <->  L  e.  ( M [,] N ) ) )
293292rspcv 3203 . . . . . . 7  |-  ( Y  e.  ( X [,] Y )  ->  ( A. x  e.  ( X [,] Y ) A  e.  ( M [,] N )  ->  L  e.  ( M [,] N
) ) )
294268, 288, 293sylc 60 . . . . . 6  |-  ( ph  ->  L  e.  ( M [,] N ) )
29544, 41, 287, 291, 294, 60, 76ditgsplit 22431 . . . . 5  |-  ( ph  ->  S__ [ M  ->  L ] C  _d u  =  ( S__ [ M  ->  K ] C  _d u  +  S__ [ K  ->  L ] C  _d u ) )
296295oveq1d 6285 . . . 4  |-  ( ph  ->  ( S__ [ M  ->  L ] C  _d u  -  S__ [ M  ->  K ] C  _d u )  =  ( ( S__ [ M  ->  K ] C  _d u  +  S__ [ K  ->  L ] C  _d u )  -  S__ [ M  ->  K ] C  _d u ) )
29744, 41, 287, 291, 60, 76ditgcl 22428 . . . . 5  |-  ( ph  ->  S__ [ M  ->  K ] C  _d u  e.  CC )
29844, 41, 291, 294, 60, 76ditgcl 22428 . . . . 5  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  e.  CC )
299297, 298pncan2d 9924 . . . 4  |-  ( ph  ->  ( ( S__ [ M  ->  K ] C  _d u  +  S__ [ K  ->  L ] C  _d u )  -  S__ [ M  ->  K ] C  _d u
)  =  S__ [ K  ->  L ] C  _d u )
300285, 296, 2993eqtrd 2499 . . 3  |-  ( ph  ->  ( ( ( x  e.  ( X [,] Y )  |->  S. ( M (,) A ) C  _d u ) `
 Y )  -  ( ( x  e.  ( X [,] Y
)  |->  S. ( M (,) A ) C  _d u ) `  X ) )  =  S__ [ K  ->  L ] C  _d u )
301240, 257, 3003eqtr3d 2503 . 2  |-  ( ph  ->  S. ( X (,) Y ) ( E  x.  B )  _d x  =  S__ [ K  ->  L ] C  _d u )
3022, 301eqtr2d 2496 1  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   _Vcvv 3106   [_csb 3420    i^i cin 3460    C_ wss 3461   (/)c0 3783   {cpr 4018   class class class wbr 4439    |-> cmpt 4497   dom cdm 4988   ran crn 4989    |` cres 4990    o. ccom 4992   -->wf 5566   ` cfv 5570  (class class class)co 6270    oFcof 6511   CCcc 9479   RRcr 9480    + caddc 9484    x. cmul 9486   RR*cxr 9616    < clt 9617    <_ cle 9618    - cmin 9796   (,)cioo 11532   [,]cicc 11535   abscabs 13149   TopOpenctopn 14911   topGenctg 14927  ℂfldccnfld 18615   intcnt 19685   -cn->ccncf 21546   volcvol 22041  MblFncmbf 22189   L^1cibl 22192   S.citg 22193   S__cdit 22416    _D cdv 22433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cc 8806  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-disj 4411  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-ofr 6514  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-omul 7127  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-acn 8314  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ioc 11537  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-limsup 13376  df-clim 13393  df-rlim 13394  df-sum 13591  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-mulg 16259  df-cntz 16554  df-cmn 16999  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-fbas 18611  df-fg 18612  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cld 19687  df-ntr 19688  df-cls 19689  df-nei 19766  df-lp 19804  df-perf 19805  df-cn 19895  df-cnp 19896  df-haus 19983  df-cmp 20054  df-tx 20229  df-hmeo 20422  df-fil 20513  df-fm 20605  df-flim 20606  df-flf 20607  df-xms 20989  df-ms 20990  df-tms 20991  df-cncf 21548  df-ovol 22042  df-vol 22043  df-mbf 22194  df-itg1 22195  df-itg2 22196  df-ibl 22197  df-itg 22198  df-0p 22243  df-ditg 22417  df-limc 22436  df-dv 22437
This theorem is referenced by:  itgsubst  22616
  Copyright terms: Public domain W3C validator