Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsubsticclem Structured version   Unicode version

Theorem itgsubsticclem 37436
Description: lemma for itgsubsticc 37437 (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsubsticclem.1  |-  F  =  ( u  e.  ( K [,] L ) 
|->  C )
itgsubsticclem.2  |-  G  =  ( u  e.  RR  |->  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) ) )
itgsubsticclem.3  |-  ( ph  ->  X  e.  RR )
itgsubsticclem.4  |-  ( ph  ->  Y  e.  RR )
itgsubsticclem.5  |-  ( ph  ->  X  <_  Y )
itgsubsticclem.6  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( K [,] L ) ) )
itgsubsticclem.7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
itgsubsticclem.8  |-  ( ph  ->  F  e.  ( ( K [,] L )
-cn-> CC ) )
itgsubsticclem.9  |-  ( ph  ->  K  e.  RR )
itgsubsticclem.10  |-  ( ph  ->  L  e.  RR )
itgsubsticclem.11  |-  ( ph  ->  K  <_  L )
itgsubsticclem.12  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
itgsubsticclem.13  |-  ( u  =  A  ->  C  =  E )
itgsubsticclem.14  |-  ( x  =  X  ->  A  =  K )
itgsubsticclem.15  |-  ( x  =  Y  ->  A  =  L )
Assertion
Ref Expression
itgsubsticclem  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Distinct variable groups:    u, A    u, E    x, G    u, K, x    u, L, x   
u, X, x    u, Y, x    ph, u, x
Allowed substitution hints:    A( x)    B( x, u)    C( x, u)    E( x)    F( x, u)    G( u)

Proof of Theorem itgsubsticclem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fveq2 5881 . . . 4  |-  ( u  =  w  ->  ( G `  u )  =  ( G `  w ) )
2 nfcv 2591 . . . 4  |-  F/_ w
( G `  u
)
3 itgsubsticclem.2 . . . . . 6  |-  G  =  ( u  e.  RR  |->  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) ) )
4 nfmpt1 4515 . . . . . 6  |-  F/_ u
( u  e.  RR  |->  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) ) )
53, 4nfcxfr 2589 . . . . 5  |-  F/_ u G
6 nfcv 2591 . . . . 5  |-  F/_ u w
75, 6nffv 5888 . . . 4  |-  F/_ u
( G `  w
)
81, 2, 7cbvditg 22694 . . 3  |-  S__ [ K  ->  L ] ( G `  u )  _d u  =  S__
[ K  ->  L ] ( G `  w )  _d w
9 itgsubsticclem.11 . . . 4  |-  ( ph  ->  K  <_  L )
10 itgsubsticclem.9 . . . . . . . . 9  |-  ( ph  ->  K  e.  RR )
11 itgsubsticclem.10 . . . . . . . . 9  |-  ( ph  ->  L  e.  RR )
1210, 11iccssred 37202 . . . . . . . 8  |-  ( ph  ->  ( K [,] L
)  C_  RR )
1312adantr 466 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  ( K [,] L )  C_  RR )
14 ioossicc 11720 . . . . . . . . 9  |-  ( K (,) L )  C_  ( K [,] L )
1514sseli 3466 . . . . . . . 8  |-  ( u  e.  ( K (,) L )  ->  u  e.  ( K [,] L
) )
1615adantl 467 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  u  e.  ( K [,] L ) )
1713, 16sseldd 3471 . . . . . 6  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  u  e.  RR )
1816iftrued 3923 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  if (
u  e.  ( K [,] L ) ,  ( F `  u
) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) )  =  ( F `
 u ) )
19 itgsubsticclem.1 . . . . . . . . . . . . 13  |-  F  =  ( u  e.  ( K [,] L ) 
|->  C )
2019a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  F  =  ( u  e.  ( K [,] L )  |->  C ) )
21 itgsubsticclem.8 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( ( K [,] L )
-cn-> CC ) )
22 cncff 21825 . . . . . . . . . . . . 13  |-  ( F  e.  ( ( K [,] L ) -cn-> CC )  ->  F :
( K [,] L
) --> CC )
2321, 22syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  F : ( K [,] L ) --> CC )
2420, 23feq1dd 37067 . . . . . . . . . . 11  |-  ( ph  ->  ( u  e.  ( K [,] L ) 
|->  C ) : ( K [,] L ) --> CC )
2524mptex2 37070 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( K [,] L ) )  ->  C  e.  CC )
2616, 25syldan 472 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  C  e.  CC )
2719fvmpt2 5973 . . . . . . . . 9  |-  ( ( u  e.  ( K [,] L )  /\  C  e.  CC )  ->  ( F `  u
)  =  C )
2816, 26, 27syl2anc 665 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  ( F `  u )  =  C )
2928, 26eqeltrd 2517 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  ( F `  u )  e.  CC )
3018, 29eqeltrd 2517 . . . . . 6  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  if (
u  e.  ( K [,] L ) ,  ( F `  u
) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) )  e.  CC )
313fvmpt2 5973 . . . . . 6  |-  ( ( u  e.  RR  /\  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) )  e.  CC )  ->  ( G `  u )  =  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) ) )
3217, 30, 31syl2anc 665 . . . . 5  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  ( G `  u )  =  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) ) )
3332, 18, 283eqtrd 2474 . . . 4  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  ( G `  u )  =  C )
349, 33ditgeq3d 37425 . . 3  |-  ( ph  ->  S__ [ K  ->  L ] ( G `  u )  _d u  =  S__ [ K  ->  L ] C  _d u )
35 itgsubsticclem.3 . . . 4  |-  ( ph  ->  X  e.  RR )
36 itgsubsticclem.4 . . . 4  |-  ( ph  ->  Y  e.  RR )
37 itgsubsticclem.5 . . . 4  |-  ( ph  ->  X  <_  Y )
38 mnfxr 11414 . . . . 5  |- -oo  e.  RR*
3938a1i 11 . . . 4  |-  ( ph  -> -oo  e.  RR* )
40 pnfxr 11412 . . . . 5  |- +oo  e.  RR*
4140a1i 11 . . . 4  |-  ( ph  -> +oo  e.  RR* )
42 ioomax 11709 . . . . . . . . 9  |-  ( -oo (,) +oo )  =  RR
4342eqcomi 2442 . . . . . . . 8  |-  RR  =  ( -oo (,) +oo )
4443a1i 11 . . . . . . 7  |-  ( ph  ->  RR  =  ( -oo (,) +oo ) )
4512, 44sseqtrd 3506 . . . . . 6  |-  ( ph  ->  ( K [,] L
)  C_  ( -oo (,) +oo ) )
46 ax-resscn 9595 . . . . . . 7  |-  RR  C_  CC
4744, 46syl6eqssr 3521 . . . . . 6  |-  ( ph  ->  ( -oo (,) +oo )  C_  CC )
48 cncfss 21831 . . . . . 6  |-  ( ( ( K [,] L
)  C_  ( -oo (,) +oo )  /\  ( -oo (,) +oo )  C_  CC )  ->  ( ( X [,] Y )
-cn-> ( K [,] L
) )  C_  (
( X [,] Y
) -cn-> ( -oo (,) +oo ) ) )
4945, 47, 48syl2anc 665 . . . . 5  |-  ( ph  ->  ( ( X [,] Y ) -cn-> ( K [,] L ) ) 
C_  ( ( X [,] Y ) -cn-> ( -oo (,) +oo )
) )
50 itgsubsticclem.6 . . . . 5  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( K [,] L ) ) )
5149, 50sseldd 3471 . . . 4  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( -oo (,) +oo ) ) )
52 itgsubsticclem.7 . . . 4  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
53 nfmpt1 4515 . . . . . . . . . . 11  |-  F/_ u
( u  e.  ( K [,] L ) 
|->  C )
5419, 53nfcxfr 2589 . . . . . . . . . 10  |-  F/_ u F
55 eqid 2429 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
56 eqid 2429 . . . . . . . . . 10  |-  U. ( TopOpen
` fld
)  =  U. ( TopOpen
` fld
)
57 eqid 2429 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5857cnfldtop 21719 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  e.  Top
5958a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( TopOpen ` fld )  e.  Top )
6012, 46syl6ss 3482 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K [,] L
)  C_  CC )
61 ssid 3489 . . . . . . . . . . . . 13  |-  CC  C_  CC
62 eqid 2429 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )t  ( K [,] L
) )  =  ( ( TopOpen ` fld )t  ( K [,] L ) )
63 unicntop 37026 . . . . . . . . . . . . . . . . 17  |-  CC  =  U. ( TopOpen ` fld )
6463restid 15295 . . . . . . . . . . . . . . . 16  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
6558, 64ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
6665eqcomi 2442 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
6757, 62, 66cncfcn 21841 . . . . . . . . . . . . 13  |-  ( ( ( K [,] L
)  C_  CC  /\  CC  C_  CC )  ->  (
( K [,] L
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( K [,] L ) )  Cn  ( TopOpen ` fld ) ) )
6860, 61, 67sylancl 666 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( K [,] L ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( K [,] L
) )  Cn  ( TopOpen
` fld
) ) )
69 reex 9629 . . . . . . . . . . . . . . . 16  |-  RR  e.  _V
7069a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  RR  e.  _V )
71 restabs 20116 . . . . . . . . . . . . . . 15  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( K [,] L
)  C_  RR  /\  RR  e.  _V )  ->  (
( ( TopOpen ` fld )t  RR )t  ( K [,] L ) )  =  ( ( TopOpen ` fld )t  ( K [,] L ) ) )
7259, 12, 70, 71syl3anc 1264 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( TopOpen ` fld )t  RR )t  ( K [,] L ) )  =  ( (
TopOpen ` fld )t  ( K [,] L
) ) )
7357tgioo2 21736 . . . . . . . . . . . . . . . . 17  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
7473eqcomi 2442 . . . . . . . . . . . . . . . 16  |-  ( (
TopOpen ` fld )t  RR )  =  (
topGen `  ran  (,) )
7574a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( TopOpen ` fld )t  RR )  =  (
topGen `  ran  (,) )
)
7675oveq1d 6320 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( TopOpen ` fld )t  RR )t  ( K [,] L ) )  =  ( (
topGen `  ran  (,) )t  ( K [,] L ) ) )
7772, 76eqtr3d 2472 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( K [,] L ) )  =  ( ( topGen `  ran  (,) )t  ( K [,] L
) ) )
7877oveq1d 6320 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( TopOpen ` fld )t  ( K [,] L ) )  Cn  ( TopOpen ` fld ) )  =  ( ( ( topGen `  ran  (,) )t  ( K [,] L
) )  Cn  ( TopOpen
` fld
) ) )
7968, 78eqtrd 2470 . . . . . . . . . . 11  |-  ( ph  ->  ( ( K [,] L ) -cn-> CC )  =  ( ( (
topGen `  ran  (,) )t  ( K [,] L ) )  Cn  ( TopOpen ` fld ) ) )
8021, 79eleqtrd 2519 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( ( ( topGen `  ran  (,) )t  ( K [,] L ) )  Cn  ( TopOpen ` fld ) ) )
8154, 55, 56, 3, 10, 11, 9, 59, 80icccncfext 37352 . . . . . . . . 9  |-  ( ph  ->  ( G  e.  ( ( topGen `  ran  (,) )  Cn  ( ( TopOpen ` fld )t  ran  F ) )  /\  ( G  |`  ( K [,] L ) )  =  F ) )
8281simpld 460 . . . . . . . 8  |-  ( ph  ->  G  e.  ( (
topGen `  ran  (,) )  Cn  ( ( TopOpen ` fld )t  ran  F ) ) )
83 uniretop 21698 . . . . . . . . 9  |-  RR  =  U. ( topGen `  ran  (,) )
84 eqid 2429 . . . . . . . . 9  |-  U. (
( TopOpen ` fld )t  ran  F )  = 
U. ( ( TopOpen ` fld )t  ran  F )
8583, 84cnf 20197 . . . . . . . 8  |-  ( G  e.  ( ( topGen ` 
ran  (,) )  Cn  (
( TopOpen ` fld )t  ran  F ) )  ->  G : RR --> U. ( ( TopOpen ` fld )t  ran  F ) )
8682, 85syl 17 . . . . . . 7  |-  ( ph  ->  G : RR --> U. (
( TopOpen ` fld )t  ran  F ) )
8744feq2d 5733 . . . . . . 7  |-  ( ph  ->  ( G : RR --> U. ( ( TopOpen ` fld )t  ran  F )  <->  G :
( -oo (,) +oo ) --> U. ( ( TopOpen ` fld )t  ran  F ) ) )
8886, 87mpbid 213 . . . . . 6  |-  ( ph  ->  G : ( -oo (,) +oo ) --> U. (
( TopOpen ` fld )t  ran  F ) )
8988feqmptd 5934 . . . . 5  |-  ( ph  ->  G  =  ( w  e.  ( -oo (,) +oo )  |->  ( G `  w ) ) )
90 frn 5752 . . . . . . . 8  |-  ( F : ( K [,] L ) --> CC  ->  ran 
F  C_  CC )
9123, 90syl 17 . . . . . . 7  |-  ( ph  ->  ran  F  C_  CC )
92 cncfss 21831 . . . . . . 7  |-  ( ( ran  F  C_  CC  /\  CC  C_  CC )  ->  ( ( -oo (,) +oo ) -cn-> ran  F )  C_  ( ( -oo (,) +oo ) -cn-> CC ) )
9391, 61, 92sylancl 666 . . . . . 6  |-  ( ph  ->  ( ( -oo (,) +oo ) -cn-> ran  F )  C_  ( ( -oo (,) +oo ) -cn-> CC ) )
9443oveq2i 6316 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )t  RR )  =  ( ( TopOpen ` fld )t  ( -oo (,) +oo ) )
9573, 94eqtri 2458 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  ( -oo (,) +oo ) )
96 eqid 2429 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t 
ran  F )  =  ( ( TopOpen ` fld )t  ran  F )
9757, 95, 96cncfcn 21841 . . . . . . . . 9  |-  ( ( ( -oo (,) +oo )  C_  CC  /\  ran  F 
C_  CC )  -> 
( ( -oo (,) +oo ) -cn-> ran  F )  =  ( ( topGen ` 
ran  (,) )  Cn  (
( TopOpen ` fld )t  ran  F ) ) )
9847, 91, 97syl2anc 665 . . . . . . . 8  |-  ( ph  ->  ( ( -oo (,) +oo ) -cn-> ran  F )  =  ( ( topGen ` 
ran  (,) )  Cn  (
( TopOpen ` fld )t  ran  F ) ) )
9998eqcomd 2437 . . . . . . 7  |-  ( ph  ->  ( ( topGen `  ran  (,) )  Cn  ( (
TopOpen ` fld )t 
ran  F ) )  =  ( ( -oo (,) +oo ) -cn-> ran  F
) )
10082, 99eleqtrd 2519 . . . . . 6  |-  ( ph  ->  G  e.  ( ( -oo (,) +oo ) -cn->
ran  F ) )
10193, 100sseldd 3471 . . . . 5  |-  ( ph  ->  G  e.  ( ( -oo (,) +oo ) -cn->
CC ) )
10289, 101eqeltrrd 2518 . . . 4  |-  ( ph  ->  ( w  e.  ( -oo (,) +oo )  |->  ( G `  w
) )  e.  ( ( -oo (,) +oo ) -cn-> CC ) )
103 itgsubsticclem.12 . . . 4  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
104 fveq2 5881 . . . 4  |-  ( w  =  A  ->  ( G `  w )  =  ( G `  A ) )
105 itgsubsticclem.14 . . . 4  |-  ( x  =  X  ->  A  =  K )
106 itgsubsticclem.15 . . . 4  |-  ( x  =  Y  ->  A  =  L )
10735, 36, 37, 39, 41, 51, 52, 102, 103, 104, 105, 106itgsubst 22886 . . 3  |-  ( ph  ->  S__ [ K  ->  L ] ( G `  w )  _d w  =  S__ [ X  ->  Y ] ( ( G `  A )  x.  B )  _d x )
1088, 34, 1073eqtr3a 2494 . 2  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( ( G `  A )  x.  B )  _d x )
1093a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  G  =  ( u  e.  RR  |->  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) ) ) )
110 simpr 462 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  u  =  A )
11157cnfldtopon 21718 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
11235, 36iccssred 37202 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X [,] Y
)  C_  RR )
113112, 46syl6ss 3482 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X [,] Y
)  C_  CC )
114 resttopon 20112 . . . . . . . . . . . . . 14  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( X [,] Y )  C_  CC )  ->  ( (
TopOpen ` fld )t  ( X [,] Y
) )  e.  (TopOn `  ( X [,] Y
) ) )
115111, 113, 114sylancr 667 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( X [,] Y ) )  e.  (TopOn `  ( X [,] Y ) ) )
116 resttopon 20112 . . . . . . . . . . . . . 14  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( K [,] L )  C_  CC )  ->  ( (
TopOpen ` fld )t  ( K [,] L
) )  e.  (TopOn `  ( K [,] L
) ) )
117111, 60, 116sylancr 667 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( K [,] L ) )  e.  (TopOn `  ( K [,] L ) ) )
118 eqid 2429 . . . . . . . . . . . . . . . 16  |-  ( (
TopOpen ` fld )t  ( X [,] Y
) )  =  ( ( TopOpen ` fld )t  ( X [,] Y ) )
11957, 118, 62cncfcn 21841 . . . . . . . . . . . . . . 15  |-  ( ( ( X [,] Y
)  C_  CC  /\  ( K [,] L )  C_  CC )  ->  ( ( X [,] Y )
-cn-> ( K [,] L
) )  =  ( ( ( TopOpen ` fld )t  ( X [,] Y ) )  Cn  ( ( TopOpen ` fld )t  ( K [,] L ) ) ) )
120113, 60, 119syl2anc 665 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( X [,] Y ) -cn-> ( K [,] L ) )  =  ( ( (
TopOpen ` fld )t  ( X [,] Y
) )  Cn  (
( TopOpen ` fld )t  ( K [,] L ) ) ) )
12150, 120eleqtrd 2519 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( ( TopOpen ` fld )t  ( X [,] Y ) )  Cn  ( ( TopOpen ` fld )t  ( K [,] L ) ) ) )
122 cnf2 20200 . . . . . . . . . . . . 13  |-  ( ( ( ( TopOpen ` fld )t  ( X [,] Y ) )  e.  (TopOn `  ( X [,] Y ) )  /\  ( ( TopOpen ` fld )t  ( K [,] L ) )  e.  (TopOn `  ( K [,] L ) )  /\  ( x  e.  ( X [,] Y )  |->  A )  e.  ( ( ( TopOpen ` fld )t  ( X [,] Y ) )  Cn  ( ( TopOpen ` fld )t  ( K [,] L ) ) ) )  ->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( K [,] L ) )
123115, 117, 121, 122syl3anc 1264 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( K [,] L
) )
124123adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( K [,] L ) )
125 eqid 2429 . . . . . . . . . . . 12  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( x  e.  ( X [,] Y
)  |->  A )
126125fmpt 6058 . . . . . . . . . . 11  |-  ( A. x  e.  ( X [,] Y ) A  e.  ( K [,] L
)  <->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( K [,] L ) )
127124, 126sylibr 215 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A. x  e.  ( X [,] Y
) A  e.  ( K [,] L ) )
128 ioossicc 11720 . . . . . . . . . . . 12  |-  ( X (,) Y )  C_  ( X [,] Y )
129128sseli 3466 . . . . . . . . . . 11  |-  ( x  e.  ( X (,) Y )  ->  x  e.  ( X [,] Y
) )
130129adantl 467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  x  e.  ( X [,] Y ) )
131 rsp 2798 . . . . . . . . . 10  |-  ( A. x  e.  ( X [,] Y ) A  e.  ( K [,] L
)  ->  ( x  e.  ( X [,] Y
)  ->  A  e.  ( K [,] L ) ) )
132127, 130, 131sylc 62 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  ( K [,] L ) )
133132adantr 466 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  A  e.  ( K [,] L
) )
134110, 133eqeltrd 2517 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  u  e.  ( K [,] L
) )
135134iftrued 3923 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  if ( u  e.  ( K [,] L ) ,  ( F `  u
) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) )  =  ( F `
 u ) )
136 simpll 758 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  ph )
137136, 134, 25syl2anc 665 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  C  e.  CC )
138134, 137, 27syl2anc 665 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  ( F `  u )  =  C )
139 itgsubsticclem.13 . . . . . . 7  |-  ( u  =  A  ->  C  =  E )
140139adantl 467 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  C  =  E )
141135, 138, 1403eqtrd 2474 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  if ( u  e.  ( K [,] L ) ,  ( F `  u
) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) )  =  E )
14212adantr 466 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( K [,] L )  C_  RR )
143142, 132sseldd 3471 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  RR )
144 elex 3096 . . . . . . . 8  |-  ( A  e.  ( K [,] L )  ->  A  e.  _V )
145132, 144syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  _V )
146 isset 3091 . . . . . . 7  |-  ( A  e.  _V  <->  E. u  u  =  A )
147145, 146sylib 199 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  E. u  u  =  A )
148140, 137eqeltrrd 2518 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  E  e.  CC )
149147, 148exlimddv 1773 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  E  e.  CC )
150109, 141, 143, 149fvmptd 5970 . . . 4  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( G `  A )  =  E )
151150oveq1d 6320 . . 3  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( G `  A )  x.  B )  =  ( E  x.  B ) )
15237, 151ditgeq3d 37425 . 2  |-  ( ph  ->  S__ [ X  ->  Y ] ( ( G `
 A )  x.  B )  _d x  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
153108, 152eqtrd 2470 1  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437   E.wex 1659    e. wcel 1870   A.wral 2782   _Vcvv 3087    i^i cin 3441    C_ wss 3442   ifcif 3915   U.cuni 4222   class class class wbr 4426    |-> cmpt 4484   ran crn 4855    |` cres 4856   -->wf 5597   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537    x. cmul 9543   +oocpnf 9671   -oocmnf 9672   RR*cxr 9673    < clt 9674    <_ cle 9675   (,)cioo 11635   [,]cicc 11638   ↾t crest 15282   TopOpenctopn 15283   topGenctg 15299  ℂfldccnfld 18909   Topctop 19852  TopOnctopon 19853    Cn ccn 20175   -cn->ccncf 21808   L^1cibl 22460   S__cdit 22686    _D cdv 22703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cc 8863  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-disj 4398  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-ofr 6546  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-omul 7195  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-acn 8375  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-sum 13731  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15166  df-mulr 15167  df-starv 15168  df-sca 15169  df-vsca 15170  df-ip 15171  df-tset 15172  df-ple 15173  df-ds 15175  df-unif 15176  df-hom 15177  df-cco 15178  df-rest 15284  df-topn 15285  df-0g 15303  df-gsum 15304  df-topgen 15305  df-pt 15306  df-prds 15309  df-xrs 15363  df-qtop 15368  df-imas 15369  df-xps 15371  df-mre 15447  df-mrc 15448  df-acs 15450  df-mgm 16443  df-sgrp 16482  df-mnd 16492  df-submnd 16538  df-mulg 16631  df-cntz 16926  df-cmn 17371  df-psmet 18901  df-xmet 18902  df-met 18903  df-bl 18904  df-mopn 18905  df-fbas 18906  df-fg 18907  df-cnfld 18910  df-top 19856  df-bases 19857  df-topon 19858  df-topsp 19859  df-cld 19969  df-ntr 19970  df-cls 19971  df-nei 20049  df-lp 20087  df-perf 20088  df-cn 20178  df-cnp 20179  df-haus 20266  df-cmp 20337  df-tx 20512  df-hmeo 20705  df-fil 20796  df-fm 20888  df-flim 20889  df-flf 20890  df-xms 21270  df-ms 21271  df-tms 21272  df-cncf 21810  df-ovol 22301  df-vol 22303  df-mbf 22462  df-itg1 22463  df-itg2 22464  df-ibl 22465  df-itg 22466  df-0p 22513  df-ditg 22687  df-limc 22706  df-dv 22707
This theorem is referenced by:  itgsubsticc  37437
  Copyright terms: Public domain W3C validator