MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsubst Unicode version

Theorem itgsubst 19886
Description: Integration by  u-substitution. If  A ( x ) is a continuous, differentiable function from  [ X ,  Y ] to  ( Z ,  W ), whose derivative is continuous and integrable, and  C ( u ) is a continuous function on  ( Z ,  W ), then the integral of  C ( u ) from  K  =  A ( X ) to  L  =  A ( Y ) is equal to the integral of  C ( A ( x ) )  _D  A ( x ) from  X to  Y. In this part of the proof we discharge the assumptions in itgsubstlem 19885, which use the fact that  ( Z ,  W ) is open to shrink the interval a little to  ( M ,  N ) where  Z  <  M  <  N  <  W- this is possible because  A ( x ) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
itgsubst.x  |-  ( ph  ->  X  e.  RR )
itgsubst.y  |-  ( ph  ->  Y  e.  RR )
itgsubst.le  |-  ( ph  ->  X  <_  Y )
itgsubst.z  |-  ( ph  ->  Z  e.  RR* )
itgsubst.w  |-  ( ph  ->  W  e.  RR* )
itgsubst.a  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
itgsubst.b  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L ^1 ) )
itgsubst.c  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC ) )
itgsubst.da  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
itgsubst.e  |-  ( u  =  A  ->  C  =  E )
itgsubst.k  |-  ( x  =  X  ->  A  =  K )
itgsubst.l  |-  ( x  =  Y  ->  A  =  L )
Assertion
Ref Expression
itgsubst  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Distinct variable groups:    u, E    x, u, K    ph, u, x   
u, X, x    u, Y, x    u, A    x, C    u, W, x    u, L, x    u, Z, x
Allowed substitution hints:    A( x)    B( x, u)    C( u)    E( x)

Proof of Theorem itgsubst
Dummy variables  m  n  y  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgsubst.x . . 3  |-  ( ph  ->  X  e.  RR )
2 itgsubst.y . . 3  |-  ( ph  ->  Y  e.  RR )
3 itgsubst.le . . 3  |-  ( ph  ->  X  <_  Y )
4 ioossre 10928 . . . . 5  |-  ( Z (,) W )  C_  RR
5 ax-resscn 9003 . . . . 5  |-  RR  C_  CC
6 cncfss 18882 . . . . 5  |-  ( ( ( Z (,) W
)  C_  RR  /\  RR  C_  CC )  ->  (
( X [,] Y
) -cn-> ( Z (,) W ) )  C_  ( ( X [,] Y ) -cn-> RR ) )
74, 5, 6mp2an 654 . . . 4  |-  ( ( X [,] Y )
-cn-> ( Z (,) W
) )  C_  (
( X [,] Y
) -cn-> RR )
8 itgsubst.a . . . 4  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
97, 8sseldi 3306 . . 3  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> RR ) )
101, 2, 3, 9evthicc 19309 . 2  |-  ( ph  ->  ( E. y  e.  ( X [,] Y
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  E. y  e.  ( X [,] Y ) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )
11 ressxr 9085 . . . . . . . 8  |-  RR  C_  RR*
124, 11sstri 3317 . . . . . . 7  |-  ( Z (,) W )  C_  RR*
13 cncff 18876 . . . . . . . . . 10  |-  ( ( x  e.  ( X [,] Y )  |->  A )  e.  ( ( X [,] Y )
-cn-> ( Z (,) W
) )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )
148, 13syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( Z (,) W
) )
1514adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( Z (,) W ) )
16 simprl 733 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  y  e.  ( X [,] Y ) )
1715, 16ffvelrnd 5830 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  e.  ( Z (,) W
) )
1812, 17sseldi 3306 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  e. 
RR* )
19 itgsubst.w . . . . . . 7  |-  ( ph  ->  W  e.  RR* )
2019adantr 452 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  W  e.  RR* )
21 eliooord 10926 . . . . . . . 8  |-  ( ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  ( Z (,) W )  -> 
( Z  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  /\  ( (
x  e.  ( X [,] Y )  |->  A ) `  y )  <  W ) )
2217, 21syl 16 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( Z  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <  W )
)
2322simprd 450 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
W )
24 qbtwnxr 10742 . . . . . 6  |-  ( ( ( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR*  /\  W  e.  RR*  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <  W )  ->  E. n  e.  QQ  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) )
2518, 20, 23, 24syl3anc 1184 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  E. n  e.  QQ  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) )
26 qre 10535 . . . . . . . . . 10  |-  ( n  e.  QQ  ->  n  e.  RR )
2726ad2antrl 709 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  e.  RR )
28 itgsubst.z . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  RR* )
2928ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  Z  e.  RR* )
3018adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR* )
3127rexrd 9090 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  e.  RR* )
3222simpld 446 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  Z  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
) )
3332adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  Z  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) )
34 simprrl 741 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)
3529, 30, 31, 33, 34xrlttrd 10705 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  Z  <  n )
36 simprrr 742 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  <  W )
3719ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  W  e.  RR* )
38 elioo2 10913 . . . . . . . . . 10  |-  ( ( Z  e.  RR*  /\  W  e.  RR* )  ->  (
n  e.  ( Z (,) W )  <->  ( n  e.  RR  /\  Z  < 
n  /\  n  <  W ) ) )
3929, 37, 38syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( n  e.  ( Z (,) W )  <-> 
( n  e.  RR  /\  Z  <  n  /\  n  <  W ) ) )
4027, 35, 36, 39mpbir3and 1137 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  e.  ( Z (,) W ) )
41 anass 631 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  <_  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) )  <-> 
( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )
42 simprrl 741 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)
4342adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)
4414ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( Z (,) W
) )
4544ffvelrnda 5829 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( Z (,) W ) )
4612, 45sseldi 3306 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  RR* )
47 simplr 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
y  e.  ( X [,] Y ) )
4844, 47ffvelrnd 5830 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  ( Z (,) W ) )
4912, 48sseldi 3306 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR* )
5049adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR* )
5126ad2antrl 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  e.  RR )
5251adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  n  e.  RR )
5352rexrd 9090 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  n  e.  RR* )
54 xrlelttr 10702 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  RR*  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR*  /\  n  e.  RR* )  ->  ( ( ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  <_  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  <  n ) )
5546, 50, 53, 54syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  <_  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  <  n ) )
5643, 55mpan2d 656 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <  n )
)
5756ralimdva 2744 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  ->  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
5857imp 419 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) )  ->  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )
5958an32s 780 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) )  /\  ( n  e.  QQ  /\  (
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n  /\  n  <  W ) ) )  ->  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )
6041, 59sylanbr 460 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <  n )
6140, 60jca 519 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( n  e.  ( Z (,) W )  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
6261ex 424 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( ( n  e.  QQ  /\  (
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n  /\  n  <  W ) )  ->  ( n  e.  ( Z (,) W
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) ) )
6362reximdv2 2775 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( E. n  e.  QQ  ( ( ( x  e.  ( X [,] Y )  |->  A ) `  y )  <  n  /\  n  <  W )  ->  E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
6425, 63mpd 15 . . . 4  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  E. n  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n
)
6564rexlimdvaa 2791 . . 3  |-  ( ph  ->  ( E. y  e.  ( X [,] Y
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  ->  E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
6628adantr 452 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  Z  e.  RR* )
6714adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( Z (,) W ) )
68 simprl 733 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  y  e.  ( X [,] Y ) )
6967, 68ffvelrnd 5830 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  e.  ( Z (,) W
) )
7012, 69sseldi 3306 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  e. 
RR* )
7169, 21syl 16 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( Z  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <  W )
)
7271simpld 446 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  Z  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
) )
73 qbtwnxr 10742 . . . . . 6  |-  ( ( Z  e.  RR*  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  RR*  /\  Z  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) )  ->  E. m  e.  QQ  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) )
7466, 70, 72, 73syl3anc 1184 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  E. m  e.  QQ  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) )
75 qre 10535 . . . . . . . . . 10  |-  ( m  e.  QQ  ->  m  e.  RR )
7675ad2antrl 709 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  e.  RR )
77 simprrl 741 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  Z  <  m )
7876rexrd 9090 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  e.  RR* )
7970adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  RR* )
8019ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  W  e.  RR* )
81 simprrr 742 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) )
8271simprd 450 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
W )
8382adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <  W )
8478, 79, 80, 81, 83xrlttrd 10705 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  <  W )
8528ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  Z  e.  RR* )
86 elioo2 10913 . . . . . . . . . 10  |-  ( ( Z  e.  RR*  /\  W  e.  RR* )  ->  (
m  e.  ( Z (,) W )  <->  ( m  e.  RR  /\  Z  < 
m  /\  m  <  W ) ) )
8785, 80, 86syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
m  e.  ( Z (,) W )  <->  ( m  e.  RR  /\  Z  < 
m  /\  m  <  W ) ) )
8876, 77, 84, 87mpbir3and 1137 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  e.  ( Z (,) W
) )
89 anass 631 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y )  |->  A ) `  y )  <_  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z ) )  <-> 
( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) ) )
90 simprrr 742 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) )
9190adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) )
9275ad2antrl 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  e.  RR )
9392adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  e.  RR )
9493rexrd 9090 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  e.  RR* )
9514ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )
96 simplr 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  y  e.  ( X [,] Y
) )
9795, 96ffvelrnd 5830 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  ( Z (,) W ) )
9812, 97sseldi 3306 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  RR* )
9998adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR* )
10095ffvelrnda 5829 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( Z (,) W ) )
10112, 100sseldi 3306 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  RR* )
102 xrltletr 10703 . . . . . . . . . . . . . 14  |-  ( ( m  e.  RR*  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  RR*  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  RR* )  ->  ( ( m  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) )  ->  m  <  ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) )
10394, 99, 101, 102syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( m  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) )  ->  m  <  ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) )
10491, 103mpand 657 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  ->  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )
105104ralimdva 2744 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  ->  A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z ) ) )
106105imp 419 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) )  ->  A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) )
107106an32s 780 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) ) )  ->  A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) )
10889, 107sylanbr 460 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) )
10988, 108jca 519 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
m  e.  ( Z (,) W )  /\  A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z ) ) )
110109ex 424 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( m  e.  ( Z (,) W
)  /\  A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) ) )
111110reximdv2 2775 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( E. m  e.  QQ  ( Z  < 
m  /\  m  <  ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
) )  ->  E. m  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) )
11274, 111mpd 15 . . . 4  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  E. m  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z ) )
113112rexlimdvaa 2791 . . 3  |-  ( ph  ->  ( E. y  e.  ( X [,] Y
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  ->  E. m  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) )
114 ancom 438 . . . . 5  |-  ( ( E. n  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n  /\  E. m  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z ) )  <->  ( E. m  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
115 reeanv 2835 . . . . 5  |-  ( E. m  e.  ( Z (,) W ) E. n  e.  ( Z (,) W ) ( A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  <->  ( E. m  e.  ( Z (,) W ) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
116114, 115bitr4i 244 . . . 4  |-  ( ( E. n  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n  /\  E. m  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z ) )  <->  E. m  e.  ( Z (,) W ) E. n  e.  ( Z (,) W ) ( A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
117 r19.26 2798 . . . . . 6  |-  ( A. z  e.  ( X [,] Y ) ( m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n
)  <->  ( A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
11814adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )
119118ffvelrnda 5829 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  e.  ( Z (,) W ) )
1204, 119sseldi 3306 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  e.  RR )
1211203biant1d 1292 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
m  <  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  /\  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  <->  ( (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  RR  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n
) ) )
122 simplrl 737 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  e.  ( Z (,) W ) )
12312, 122sseldi 3306 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  e.  RR* )
124 simplrr 738 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  n  e.  ( Z (,) W ) )
12512, 124sseldi 3306 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  n  e.  RR* )
126 elioo2 10913 . . . . . . . . . 10  |-  ( ( m  e.  RR*  /\  n  e.  RR* )  ->  (
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( m (,) n )  <-> 
( ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  e.  RR  /\  m  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <  n )
) )
127123, 125, 126syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  ( m (,) n )  <->  ( (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  RR  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n
) ) )
128121, 127bitr4d 248 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
m  <  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  /\  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  <->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  e.  ( m (,) n ) ) )
129128ralbidva 2682 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  /\  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  <->  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  e.  ( m (,) n
) ) )
130 nffvmpt1 5695 . . . . . . . . . . . 12  |-  F/_ x
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )
131130nfel1 2550 . . . . . . . . . . 11  |-  F/ x
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( m (,) n )
132 nfv 1626 . . . . . . . . . . 11  |-  F/ z ( ( x  e.  ( X [,] Y
)  |->  A ) `  x )  e.  ( m (,) n )
133 fveq2 5687 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  =  ( ( x  e.  ( X [,] Y )  |->  A ) `  x ) )
134133eleq1d 2470 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( m (,) n )  <-> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  x )  e.  ( m (,) n ) ) )
135131, 132, 134cbvral 2888 . . . . . . . . . 10  |-  ( A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  e.  ( m (,) n )  <->  A. x  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 x )  e.  ( m (,) n
) )
136 simpr 448 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  x  e.  ( X [,] Y ) )
137 eqid 2404 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( x  e.  ( X [,] Y
)  |->  A )
138137fmpt 5849 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  ( X [,] Y ) A  e.  ( Z (,) W
)  <->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( Z (,) W ) )
13914, 138sylibr 204 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. x  e.  ( X [,] Y ) A  e.  ( Z (,) W ) )
140139r19.21bi 2764 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( Z (,) W ) )
141137fvmpt2 5771 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( X [,] Y )  /\  A  e.  ( Z (,) W ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  x )  =  A )
142136, 140, 141syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  x )  =  A )
143142eleq1d 2470 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( (
( x  e.  ( X [,] Y ) 
|->  A ) `  x
)  e.  ( m (,) n )  <->  A  e.  ( m (,) n
) ) )
144143ralbidva 2682 . . . . . . . . . 10  |-  ( ph  ->  ( A. x  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 x )  e.  ( m (,) n
)  <->  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )
145135, 144syl5bb 249 . . . . . . . . 9  |-  ( ph  ->  ( A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  e.  ( m (,) n
)  <->  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )
146145adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  ( m (,) n )  <->  A. x  e.  ( X [,] Y
) A  e.  ( m (,) n ) ) )
1471adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  X  e.  RR )
1482adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  Y  e.  RR )
1493adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  X  <_  Y
)
15028adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  Z  e.  RR* )
15119adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  W  e.  RR* )
152 nfcv 2540 . . . . . . . . . . . . . 14  |-  F/_ y A
153 nfcsb1v 3243 . . . . . . . . . . . . . 14  |-  F/_ x [_ y  /  x ]_ A
154 csbeq1a 3219 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  A  =  [_ y  /  x ]_ A )
155152, 153, 154cbvmpt 4259 . . . . . . . . . . . . 13  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( y  e.  ( X [,] Y
)  |->  [_ y  /  x ]_ A )
156155, 8syl5eqelr 2489 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  e.  ( X [,] Y ) 
|->  [_ y  /  x ]_ A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
157156adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  ( y  e.  ( X [,] Y
)  |->  [_ y  /  x ]_ A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
158 nfcv 2540 . . . . . . . . . . . . . 14  |-  F/_ y B
159 nfcsb1v 3243 . . . . . . . . . . . . . 14  |-  F/_ x [_ y  /  x ]_ B
160 csbeq1a 3219 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
161158, 159, 160cbvmpt 4259 . . . . . . . . . . . . 13  |-  ( x  e.  ( X (,) Y )  |->  B )  =  ( y  e.  ( X (,) Y
)  |->  [_ y  /  x ]_ B )
162 itgsubst.b . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L ^1 ) )
163161, 162syl5eqelr 2489 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  e.  ( X (,) Y ) 
|->  [_ y  /  x ]_ B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L ^1 ) )
164163adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  ( y  e.  ( X (,) Y
)  |->  [_ y  /  x ]_ B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L ^1 ) )
165 nfcv 2540 . . . . . . . . . . . . . 14  |-  F/_ v C
166 nfcsb1v 3243 . . . . . . . . . . . . . 14  |-  F/_ u [_ v  /  u ]_ C
167 csbeq1a 3219 . . . . . . . . . . . . . 14  |-  ( u  =  v  ->  C  =  [_ v  /  u ]_ C )
168165, 166, 167cbvmpt 4259 . . . . . . . . . . . . 13  |-  ( u  e.  ( Z (,) W )  |->  C )  =  ( v  e.  ( Z (,) W
)  |->  [_ v  /  u ]_ C )
169 itgsubst.c . . . . . . . . . . . . 13  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC ) )
170168, 169syl5eqelr 2489 . . . . . . . . . . . 12  |-  ( ph  ->  ( v  e.  ( Z (,) W ) 
|->  [_ v  /  u ]_ C )  e.  ( ( Z (,) W
) -cn-> CC ) )
171170adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  ( v  e.  ( Z (,) W
)  |->  [_ v  /  u ]_ C )  e.  ( ( Z (,) W
) -cn-> CC ) )
172 itgsubst.da . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
173155oveq2i 6051 . . . . . . . . . . . . 13  |-  ( RR 
_D  ( x  e.  ( X [,] Y
)  |->  A ) )  =  ( RR  _D  ( y  e.  ( X [,] Y ) 
|->  [_ y  /  x ]_ A ) )
174172, 173, 1613eqtr3g 2459 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR  _D  (
y  e.  ( X [,] Y )  |->  [_ y  /  x ]_ A
) )  =  ( y  e.  ( X (,) Y )  |->  [_ y  /  x ]_ B
) )
175174adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  ( RR  _D  ( y  e.  ( X [,] Y ) 
|->  [_ y  /  x ]_ A ) )  =  ( y  e.  ( X (,) Y ) 
|->  [_ y  /  x ]_ B ) )
176 csbeq1 3214 . . . . . . . . . . 11  |-  ( v  =  [_ y  /  x ]_ A  ->  [_ v  /  u ]_ C  = 
[_ [_ y  /  x ]_ A  /  u ]_ C )
177 csbeq1 3214 . . . . . . . . . . 11  |-  ( y  =  X  ->  [_ y  /  x ]_ A  = 
[_ X  /  x ]_ A )
178 csbeq1 3214 . . . . . . . . . . 11  |-  ( y  =  Y  ->  [_ y  /  x ]_ A  = 
[_ Y  /  x ]_ A )
179 simprll 739 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  m  e.  ( Z (,) W ) )
180 simprlr 740 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  n  e.  ( Z (,) W ) )
181 simprr 734 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) )
182153nfel1 2550 . . . . . . . . . . . . 13  |-  F/ x [_ y  /  x ]_ A  e.  (
m (,) n )
183154eleq1d 2470 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( A  e.  ( m (,) n )  <->  [_ y  /  x ]_ A  e.  ( m (,) n ) ) )
184182, 183rspc 3006 . . . . . . . . . . . 12  |-  ( y  e.  ( X [,] Y )  ->  ( A. x  e.  ( X [,] Y ) A  e.  ( m (,) n )  ->  [_ y  /  x ]_ A  e.  ( m (,) n
) ) )
185181, 184mpan9 456 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y
) A  e.  ( m (,) n ) ) )  /\  y  e.  ( X [,] Y
) )  ->  [_ y  /  x ]_ A  e.  ( m (,) n
) )
186147, 148, 149, 150, 151, 157, 164, 171, 175, 176, 177, 178, 179, 180, 185itgsubstlem 19885 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] [_ v  /  u ]_ C  _d v  =  S__ [ X  ->  Y ] (
[_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B )  _d y )
187167, 165, 166cbvditg 19694 . . . . . . . . . . . 12  |-  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__
[ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] [_ v  /  u ]_ C  _d v
188 nfcvd 2541 . . . . . . . . . . . . . . 15  |-  ( X  e.  RR  ->  F/_ x K )
189 itgsubst.k . . . . . . . . . . . . . . 15  |-  ( x  =  X  ->  A  =  K )
190188, 189csbiegf 3251 . . . . . . . . . . . . . 14  |-  ( X  e.  RR  ->  [_ X  /  x ]_ A  =  K )
191 ditgeq1 19688 . . . . . . . . . . . . . 14  |-  ( [_ X  /  x ]_ A  =  K  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__
[ K  ->  [_ Y  /  x ]_ A ] C  _d u )
1921, 190, 1913syl 19 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__ [ K  ->  [_ Y  /  x ]_ A ] C  _d u )
193 nfcvd 2541 . . . . . . . . . . . . . . 15  |-  ( Y  e.  RR  ->  F/_ x L )
194 itgsubst.l . . . . . . . . . . . . . . 15  |-  ( x  =  Y  ->  A  =  L )
195193, 194csbiegf 3251 . . . . . . . . . . . . . 14  |-  ( Y  e.  RR  ->  [_ Y  /  x ]_ A  =  L )
196 ditgeq2 19689 . . . . . . . . . . . . . 14  |-  ( [_ Y  /  x ]_ A  =  L  ->  S__ [ K  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__ [ K  ->  L ] C  _d u )
1972, 195, 1963syl 19 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ K  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__ [ K  ->  L ] C  _d u )
198192, 197eqtrd 2436 . . . . . . . . . . . 12  |-  ( ph  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__ [ K  ->  L ] C  _d u )
199187, 198syl5eqr 2450 . . . . . . . . . . 11  |-  ( ph  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] [_ v  /  u ]_ C  _d v  =  S__ [ K  ->  L ] C  _d u )
200199adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] [_ v  /  u ]_ C  _d v  =  S__ [ K  ->  L ] C  _d u )
201154csbeq1d 3217 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  [_ A  /  u ]_ C  = 
[_ [_ y  /  x ]_ A  /  u ]_ C )
202201, 160oveq12d 6058 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( [_ A  /  u ]_ C  x.  B
)  =  ( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B ) )
203 nfcv 2540 . . . . . . . . . . . . 13  |-  F/_ y
( [_ A  /  u ]_ C  x.  B
)
204 nfcv 2540 . . . . . . . . . . . . . . 15  |-  F/_ x C
205153, 204nfcsb 3245 . . . . . . . . . . . . . 14  |-  F/_ x [_ [_ y  /  x ]_ A  /  u ]_ C
206 nfcv 2540 . . . . . . . . . . . . . 14  |-  F/_ x  x.
207205, 206, 159nfov 6063 . . . . . . . . . . . . 13  |-  F/_ x
( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B )
208202, 203, 207cbvditg 19694 . . . . . . . . . . . 12  |-  S__ [ X  ->  Y ] (
[_ A  /  u ]_ C  x.  B
)  _d x  =  S__ [ X  ->  Y ] ( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B
)  _d y
209 ioossicc 10952 . . . . . . . . . . . . . . . . . 18  |-  ( X (,) Y )  C_  ( X [,] Y )
210209sseli 3304 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( X (,) Y )  ->  x  e.  ( X [,] Y
) )
211210, 140sylan2 461 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  ( Z (,) W ) )
212 nfcvd 2541 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ( Z (,) W )  ->  F/_ u E )
213 itgsubst.e . . . . . . . . . . . . . . . . 17  |-  ( u  =  A  ->  C  =  E )
214212, 213csbiegf 3251 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( Z (,) W )  ->  [_ A  /  u ]_ C  =  E )
215211, 214syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  [_ A  /  u ]_ C  =  E )
216215oveq1d 6055 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( [_ A  /  u ]_ C  x.  B )  =  ( E  x.  B ) )
217216itgeq2dv 19626 . . . . . . . . . . . . 13  |-  ( ph  ->  S. ( X (,) Y ) ( [_ A  /  u ]_ C  x.  B )  _d x  =  S. ( X (,) Y ) ( E  x.  B )  _d x )
2183ditgpos 19696 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ X  ->  Y ] ( [_ A  /  u ]_ C  x.  B )  _d x  =  S. ( X (,) Y ) (
[_ A  /  u ]_ C  x.  B
)  _d x )
2193ditgpos 19696 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ X  ->  Y ] ( E  x.  B )  _d x  =  S. ( X (,) Y ) ( E  x.  B )  _d x )
220217, 218, 2193eqtr4d 2446 . . . . . . . . . . . 12  |-  ( ph  ->  S__ [ X  ->  Y ] ( [_ A  /  u ]_ C  x.  B )  _d x  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
221208, 220syl5eqr 2450 . . . . . . . . . . 11  |-  ( ph  ->  S__ [ X  ->  Y ] ( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B
)  _d y  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
222221adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  S__ [ X  ->  Y ] ( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B )  _d y  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
223186, 200, 2223eqtr3d 2444 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
224223expr 599 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. x  e.  ( X [,] Y ) A  e.  ( m (,) n )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
225146, 224sylbid 207 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  ( m (,) n )  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x ) )
226129, 225sylbid 207 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  /\  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
227117, 226syl5bir 210 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  (
( A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
228227rexlimdvva 2797 . . . 4  |-  ( ph  ->  ( E. m  e.  ( Z (,) W
) E. n  e.  ( Z (,) W
) ( A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
229116, 228syl5bi 209 . . 3  |-  ( ph  ->  ( ( E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n  /\  E. m  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
23065, 113, 229syl2and 470 . 2  |-  ( ph  ->  ( ( E. y  e.  ( X [,] Y
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  E. y  e.  ( X [,] Y ) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) )  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x ) )
23110, 230mpd 15 1  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   [_csb 3211    i^i cin 3279    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945    x. cmul 8951   RR*cxr 9075    < clt 9076    <_ cle 9077   QQcq 10530   (,)cioo 10872   [,]cicc 10875   -cn->ccncf 18859   L ^1cibl 19462   S.citg 19463   S__cdit 19464    _D cdv 19703
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cc 8271  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ofr 6265  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-ovol 19314  df-vol 19315  df-mbf 19465  df-itg1 19466  df-itg2 19467  df-ibl 19468  df-itg 19469  df-ditg 19470  df-0p 19515  df-limc 19706  df-dv 19707
  Copyright terms: Public domain W3C validator