MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsubst Structured version   Unicode version

Theorem itgsubst 22987
Description: Integration by  u-substitution. If  A ( x ) is a continuous, differentiable function from  [ X ,  Y ] to  ( Z ,  W ), whose derivative is continuous and integrable, and  C ( u ) is a continuous function on  ( Z ,  W ), then the integral of  C ( u ) from  K  =  A ( X ) to  L  =  A ( Y ) is equal to the integral of  C ( A ( x ) )  _D  A ( x ) from  X to  Y. In this part of the proof we discharge the assumptions in itgsubstlem 22986, which use the fact that  ( Z ,  W ) is open to shrink the interval a little to  ( M ,  N ) where  Z  <  M  <  N  <  W- this is possible because  A ( x ) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
itgsubst.x  |-  ( ph  ->  X  e.  RR )
itgsubst.y  |-  ( ph  ->  Y  e.  RR )
itgsubst.le  |-  ( ph  ->  X  <_  Y )
itgsubst.z  |-  ( ph  ->  Z  e.  RR* )
itgsubst.w  |-  ( ph  ->  W  e.  RR* )
itgsubst.a  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
itgsubst.b  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
itgsubst.c  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC ) )
itgsubst.da  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
itgsubst.e  |-  ( u  =  A  ->  C  =  E )
itgsubst.k  |-  ( x  =  X  ->  A  =  K )
itgsubst.l  |-  ( x  =  Y  ->  A  =  L )
Assertion
Ref Expression
itgsubst  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Distinct variable groups:    u, E    x, u, K    ph, u, x   
u, X, x    u, Y, x    u, A    x, C    u, W, x    u, L, x    u, Z, x
Allowed substitution hints:    A( x)    B( x, u)    C( u)    E( x)

Proof of Theorem itgsubst
Dummy variables  m  n  y  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgsubst.x . . 3  |-  ( ph  ->  X  e.  RR )
2 itgsubst.y . . 3  |-  ( ph  ->  Y  e.  RR )
3 itgsubst.le . . 3  |-  ( ph  ->  X  <_  Y )
4 ioossre 11696 . . . . 5  |-  ( Z (,) W )  C_  RR
5 ax-resscn 9596 . . . . 5  |-  RR  C_  CC
6 cncfss 21917 . . . . 5  |-  ( ( ( Z (,) W
)  C_  RR  /\  RR  C_  CC )  ->  (
( X [,] Y
) -cn-> ( Z (,) W ) )  C_  ( ( X [,] Y ) -cn-> RR ) )
74, 5, 6mp2an 676 . . . 4  |-  ( ( X [,] Y )
-cn-> ( Z (,) W
) )  C_  (
( X [,] Y
) -cn-> RR )
8 itgsubst.a . . . 4  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
97, 8sseldi 3462 . . 3  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> RR ) )
101, 2, 3, 9evthicc 22396 . 2  |-  ( ph  ->  ( E. y  e.  ( X [,] Y
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  E. y  e.  ( X [,] Y ) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )
11 ressxr 9684 . . . . . . . 8  |-  RR  C_  RR*
124, 11sstri 3473 . . . . . . 7  |-  ( Z (,) W )  C_  RR*
13 cncff 21911 . . . . . . . . . 10  |-  ( ( x  e.  ( X [,] Y )  |->  A )  e.  ( ( X [,] Y )
-cn-> ( Z (,) W
) )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )
148, 13syl 17 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( Z (,) W
) )
1514adantr 466 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( Z (,) W ) )
16 simprl 762 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  y  e.  ( X [,] Y ) )
1715, 16ffvelrnd 6034 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  e.  ( Z (,) W
) )
1812, 17sseldi 3462 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  e. 
RR* )
19 itgsubst.w . . . . . . 7  |-  ( ph  ->  W  e.  RR* )
2019adantr 466 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  W  e.  RR* )
21 eliooord 11694 . . . . . . . 8  |-  ( ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  ( Z (,) W )  -> 
( Z  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  /\  ( (
x  e.  ( X [,] Y )  |->  A ) `  y )  <  W ) )
2217, 21syl 17 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( Z  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <  W )
)
2322simprd 464 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
W )
24 qbtwnxr 11493 . . . . . 6  |-  ( ( ( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR*  /\  W  e.  RR*  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <  W )  ->  E. n  e.  QQ  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) )
2518, 20, 23, 24syl3anc 1264 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  E. n  e.  QQ  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) )
26 qre 11269 . . . . . . . . . 10  |-  ( n  e.  QQ  ->  n  e.  RR )
2726ad2antrl 732 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  e.  RR )
28 itgsubst.z . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  RR* )
2928ad2antrr 730 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  Z  e.  RR* )
3018adantr 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR* )
3127rexrd 9690 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  e.  RR* )
3222simpld 460 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  Z  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
) )
3332adantr 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  Z  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) )
34 simprrl 772 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)
3529, 30, 31, 33, 34xrlttrd 11456 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  Z  <  n )
36 simprrr 773 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  <  W )
3719ad2antrr 730 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  W  e.  RR* )
38 elioo2 11677 . . . . . . . . . 10  |-  ( ( Z  e.  RR*  /\  W  e.  RR* )  ->  (
n  e.  ( Z (,) W )  <->  ( n  e.  RR  /\  Z  < 
n  /\  n  <  W ) ) )
3929, 37, 38syl2anc 665 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( n  e.  ( Z (,) W )  <-> 
( n  e.  RR  /\  Z  <  n  /\  n  <  W ) ) )
4027, 35, 36, 39mpbir3and 1188 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  e.  ( Z (,) W ) )
41 anass 653 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  <_  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) )  <-> 
( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )
42 simprrl 772 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)
4342adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)
4414ad2antrr 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( Z (,) W
) )
4544ffvelrnda 6033 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( Z (,) W ) )
4612, 45sseldi 3462 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  RR* )
47 simplr 760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
y  e.  ( X [,] Y ) )
4844, 47ffvelrnd 6034 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  ( Z (,) W ) )
4912, 48sseldi 3462 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR* )
5049adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR* )
5126ad2antrl 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  e.  RR )
5251adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  n  e.  RR )
5352rexrd 9690 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  n  e.  RR* )
54 xrlelttr 11453 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  RR*  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR*  /\  n  e.  RR* )  ->  ( ( ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  <_  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  <  n ) )
5546, 50, 53, 54syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  <_  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  <  n ) )
5643, 55mpan2d 678 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <  n )
)
5756ralimdva 2833 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  ->  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
5857imp 430 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) )  ->  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )
5958an32s 811 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) )  /\  ( n  e.  QQ  /\  (
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n  /\  n  <  W ) ) )  ->  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )
6041, 59sylanbr 475 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <  n )
6140, 60jca 534 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( n  e.  ( Z (,) W )  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
6261ex 435 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( ( n  e.  QQ  /\  (
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n  /\  n  <  W ) )  ->  ( n  e.  ( Z (,) W
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) ) )
6362reximdv2 2896 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( E. n  e.  QQ  ( ( ( x  e.  ( X [,] Y )  |->  A ) `  y )  <  n  /\  n  <  W )  ->  E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
6425, 63mpd 15 . . . 4  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  E. n  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n
)
6564rexlimdvaa 2918 . . 3  |-  ( ph  ->  ( E. y  e.  ( X [,] Y
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  ->  E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
6628adantr 466 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  Z  e.  RR* )
6714adantr 466 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( Z (,) W ) )
68 simprl 762 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  y  e.  ( X [,] Y ) )
6967, 68ffvelrnd 6034 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  e.  ( Z (,) W
) )
7012, 69sseldi 3462 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  e. 
RR* )
7169, 21syl 17 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( Z  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <  W )
)
7271simpld 460 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  Z  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
) )
73 qbtwnxr 11493 . . . . . 6  |-  ( ( Z  e.  RR*  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  RR*  /\  Z  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) )  ->  E. m  e.  QQ  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) )
7466, 70, 72, 73syl3anc 1264 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  E. m  e.  QQ  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) )
75 qre 11269 . . . . . . . . . 10  |-  ( m  e.  QQ  ->  m  e.  RR )
7675ad2antrl 732 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  e.  RR )
77 simprrl 772 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  Z  <  m )
7876rexrd 9690 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  e.  RR* )
7970adantr 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  RR* )
8019ad2antrr 730 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  W  e.  RR* )
81 simprrr 773 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) )
8271simprd 464 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
W )
8382adantr 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <  W )
8478, 79, 80, 81, 83xrlttrd 11456 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  <  W )
8528ad2antrr 730 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  Z  e.  RR* )
86 elioo2 11677 . . . . . . . . . 10  |-  ( ( Z  e.  RR*  /\  W  e.  RR* )  ->  (
m  e.  ( Z (,) W )  <->  ( m  e.  RR  /\  Z  < 
m  /\  m  <  W ) ) )
8785, 80, 86syl2anc 665 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
m  e.  ( Z (,) W )  <->  ( m  e.  RR  /\  Z  < 
m  /\  m  <  W ) ) )
8876, 77, 84, 87mpbir3and 1188 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  e.  ( Z (,) W
) )
89 anass 653 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y )  |->  A ) `  y )  <_  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z ) )  <-> 
( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) ) )
90 simprrr 773 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) )
9190adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) )
9275ad2antrl 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  e.  RR )
9392adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  e.  RR )
9493rexrd 9690 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  e.  RR* )
9514ad2antrr 730 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )
96 simplr 760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  y  e.  ( X [,] Y
) )
9795, 96ffvelrnd 6034 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  ( Z (,) W ) )
9812, 97sseldi 3462 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  RR* )
9998adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR* )
10095ffvelrnda 6033 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( Z (,) W ) )
10112, 100sseldi 3462 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  RR* )
102 xrltletr 11454 . . . . . . . . . . . . . 14  |-  ( ( m  e.  RR*  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  RR*  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  RR* )  ->  ( ( m  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) )  ->  m  <  ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) )
10394, 99, 101, 102syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( m  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) )  ->  m  <  ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) )
10491, 103mpand 679 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  ->  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )
105104ralimdva 2833 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  ->  A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z ) ) )
106105imp 430 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) )  ->  A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) )
107106an32s 811 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) ) )  ->  A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) )
10889, 107sylanbr 475 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) )
10988, 108jca 534 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
m  e.  ( Z (,) W )  /\  A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z ) ) )
110109ex 435 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( m  e.  ( Z (,) W
)  /\  A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) ) )
111110reximdv2 2896 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( E. m  e.  QQ  ( Z  < 
m  /\  m  <  ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
) )  ->  E. m  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) )
11274, 111mpd 15 . . . 4  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  E. m  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z ) )
113112rexlimdvaa 2918 . . 3  |-  ( ph  ->  ( E. y  e.  ( X [,] Y
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  ->  E. m  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) )
114 ancom 451 . . . . 5  |-  ( ( E. n  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n  /\  E. m  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z ) )  <->  ( E. m  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
115 reeanv 2996 . . . . 5  |-  ( E. m  e.  ( Z (,) W ) E. n  e.  ( Z (,) W ) ( A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  <->  ( E. m  e.  ( Z (,) W ) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
116114, 115bitr4i 255 . . . 4  |-  ( ( E. n  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n  /\  E. m  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z ) )  <->  E. m  e.  ( Z (,) W ) E. n  e.  ( Z (,) W ) ( A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
117 r19.26 2955 . . . . . 6  |-  ( A. z  e.  ( X [,] Y ) ( m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n
)  <->  ( A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
11814adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )
119118ffvelrnda 6033 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  e.  ( Z (,) W ) )
1204, 119sseldi 3462 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  e.  RR )
1211203biant1d 1373 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
m  <  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  /\  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  <->  ( (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  RR  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n
) ) )
122 simplrl 768 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  e.  ( Z (,) W ) )
12312, 122sseldi 3462 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  e.  RR* )
124 simplrr 769 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  n  e.  ( Z (,) W ) )
12512, 124sseldi 3462 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  n  e.  RR* )
126 elioo2 11677 . . . . . . . . . 10  |-  ( ( m  e.  RR*  /\  n  e.  RR* )  ->  (
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( m (,) n )  <-> 
( ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  e.  RR  /\  m  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <  n )
) )
127123, 125, 126syl2anc 665 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  ( m (,) n )  <->  ( (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  RR  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n
) ) )
128121, 127bitr4d 259 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
m  <  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  /\  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  <->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  e.  ( m (,) n ) ) )
129128ralbidva 2861 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  /\  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  <->  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  e.  ( m (,) n
) ) )
130 nffvmpt1 5885 . . . . . . . . . . . 12  |-  F/_ x
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )
131130nfel1 2600 . . . . . . . . . . 11  |-  F/ x
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( m (,) n )
132 nfv 1751 . . . . . . . . . . 11  |-  F/ z ( ( x  e.  ( X [,] Y
)  |->  A ) `  x )  e.  ( m (,) n )
133 fveq2 5877 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  =  ( ( x  e.  ( X [,] Y )  |->  A ) `  x ) )
134133eleq1d 2491 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( m (,) n )  <-> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  x )  e.  ( m (,) n ) ) )
135131, 132, 134cbvral 3051 . . . . . . . . . 10  |-  ( A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  e.  ( m (,) n )  <->  A. x  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 x )  e.  ( m (,) n
) )
136 simpr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  x  e.  ( X [,] Y ) )
137 eqid 2422 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( x  e.  ( X [,] Y
)  |->  A )
138137fmpt 6054 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  ( X [,] Y ) A  e.  ( Z (,) W
)  <->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( Z (,) W ) )
13914, 138sylibr 215 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. x  e.  ( X [,] Y ) A  e.  ( Z (,) W ) )
140139r19.21bi 2794 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( Z (,) W ) )
141137fvmpt2 5969 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( X [,] Y )  /\  A  e.  ( Z (,) W ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  x )  =  A )
142136, 140, 141syl2anc 665 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  x )  =  A )
143142eleq1d 2491 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( (
( x  e.  ( X [,] Y ) 
|->  A ) `  x
)  e.  ( m (,) n )  <->  A  e.  ( m (,) n
) ) )
144143ralbidva 2861 . . . . . . . . . 10  |-  ( ph  ->  ( A. x  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 x )  e.  ( m (,) n
)  <->  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )
145135, 144syl5bb 260 . . . . . . . . 9  |-  ( ph  ->  ( A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  e.  ( m (,) n
)  <->  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )
146145adantr 466 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  ( m (,) n )  <->  A. x  e.  ( X [,] Y
) A  e.  ( m (,) n ) ) )
1471adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  X  e.  RR )
1482adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  Y  e.  RR )
1493adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  X  <_  Y
)
15028adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  Z  e.  RR* )
15119adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  W  e.  RR* )
152 nfcv 2584 . . . . . . . . . . . . . 14  |-  F/_ y A
153 nfcsb1v 3411 . . . . . . . . . . . . . 14  |-  F/_ x [_ y  /  x ]_ A
154 csbeq1a 3404 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  A  =  [_ y  /  x ]_ A )
155152, 153, 154cbvmpt 4512 . . . . . . . . . . . . 13  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( y  e.  ( X [,] Y
)  |->  [_ y  /  x ]_ A )
156155, 8syl5eqelr 2515 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  e.  ( X [,] Y ) 
|->  [_ y  /  x ]_ A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
157156adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  ( y  e.  ( X [,] Y
)  |->  [_ y  /  x ]_ A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
158 nfcv 2584 . . . . . . . . . . . . . 14  |-  F/_ y B
159 nfcsb1v 3411 . . . . . . . . . . . . . 14  |-  F/_ x [_ y  /  x ]_ B
160 csbeq1a 3404 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
161158, 159, 160cbvmpt 4512 . . . . . . . . . . . . 13  |-  ( x  e.  ( X (,) Y )  |->  B )  =  ( y  e.  ( X (,) Y
)  |->  [_ y  /  x ]_ B )
162 itgsubst.b . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
163161, 162syl5eqelr 2515 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  e.  ( X (,) Y ) 
|->  [_ y  /  x ]_ B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
164163adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  ( y  e.  ( X (,) Y
)  |->  [_ y  /  x ]_ B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
165 nfcv 2584 . . . . . . . . . . . . . 14  |-  F/_ v C
166 nfcsb1v 3411 . . . . . . . . . . . . . 14  |-  F/_ u [_ v  /  u ]_ C
167 csbeq1a 3404 . . . . . . . . . . . . . 14  |-  ( u  =  v  ->  C  =  [_ v  /  u ]_ C )
168165, 166, 167cbvmpt 4512 . . . . . . . . . . . . 13  |-  ( u  e.  ( Z (,) W )  |->  C )  =  ( v  e.  ( Z (,) W
)  |->  [_ v  /  u ]_ C )
169 itgsubst.c . . . . . . . . . . . . 13  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC ) )
170168, 169syl5eqelr 2515 . . . . . . . . . . . 12  |-  ( ph  ->  ( v  e.  ( Z (,) W ) 
|->  [_ v  /  u ]_ C )  e.  ( ( Z (,) W
) -cn-> CC ) )
171170adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  ( v  e.  ( Z (,) W
)  |->  [_ v  /  u ]_ C )  e.  ( ( Z (,) W
) -cn-> CC ) )
172 itgsubst.da . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
173155oveq2i 6312 . . . . . . . . . . . . 13  |-  ( RR 
_D  ( x  e.  ( X [,] Y
)  |->  A ) )  =  ( RR  _D  ( y  e.  ( X [,] Y ) 
|->  [_ y  /  x ]_ A ) )
174172, 173, 1613eqtr3g 2486 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR  _D  (
y  e.  ( X [,] Y )  |->  [_ y  /  x ]_ A
) )  =  ( y  e.  ( X (,) Y )  |->  [_ y  /  x ]_ B
) )
175174adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  ( RR  _D  ( y  e.  ( X [,] Y ) 
|->  [_ y  /  x ]_ A ) )  =  ( y  e.  ( X (,) Y ) 
|->  [_ y  /  x ]_ B ) )
176 csbeq1 3398 . . . . . . . . . . 11  |-  ( v  =  [_ y  /  x ]_ A  ->  [_ v  /  u ]_ C  = 
[_ [_ y  /  x ]_ A  /  u ]_ C )
177 csbeq1 3398 . . . . . . . . . . 11  |-  ( y  =  X  ->  [_ y  /  x ]_ A  = 
[_ X  /  x ]_ A )
178 csbeq1 3398 . . . . . . . . . . 11  |-  ( y  =  Y  ->  [_ y  /  x ]_ A  = 
[_ Y  /  x ]_ A )
179 simprll 770 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  m  e.  ( Z (,) W ) )
180 simprlr 771 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  n  e.  ( Z (,) W ) )
181 simprr 764 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) )
182153nfel1 2600 . . . . . . . . . . . . 13  |-  F/ x [_ y  /  x ]_ A  e.  (
m (,) n )
183154eleq1d 2491 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( A  e.  ( m (,) n )  <->  [_ y  /  x ]_ A  e.  ( m (,) n ) ) )
184182, 183rspc 3176 . . . . . . . . . . . 12  |-  ( y  e.  ( X [,] Y )  ->  ( A. x  e.  ( X [,] Y ) A  e.  ( m (,) n )  ->  [_ y  /  x ]_ A  e.  ( m (,) n
) ) )
185181, 184mpan9 471 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y
) A  e.  ( m (,) n ) ) )  /\  y  e.  ( X [,] Y
) )  ->  [_ y  /  x ]_ A  e.  ( m (,) n
) )
186147, 148, 149, 150, 151, 157, 164, 171, 175, 176, 177, 178, 179, 180, 185itgsubstlem 22986 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] [_ v  /  u ]_ C  _d v  =  S__ [ X  ->  Y ] (
[_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B )  _d y )
187167, 165, 166cbvditg 22795 . . . . . . . . . . . 12  |-  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__
[ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] [_ v  /  u ]_ C  _d v
188 nfcvd 2585 . . . . . . . . . . . . . . 15  |-  ( X  e.  RR  ->  F/_ x K )
189 itgsubst.k . . . . . . . . . . . . . . 15  |-  ( x  =  X  ->  A  =  K )
190188, 189csbiegf 3419 . . . . . . . . . . . . . 14  |-  ( X  e.  RR  ->  [_ X  /  x ]_ A  =  K )
191 ditgeq1 22789 . . . . . . . . . . . . . 14  |-  ( [_ X  /  x ]_ A  =  K  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__
[ K  ->  [_ Y  /  x ]_ A ] C  _d u )
1921, 190, 1913syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__ [ K  ->  [_ Y  /  x ]_ A ] C  _d u )
193 nfcvd 2585 . . . . . . . . . . . . . . 15  |-  ( Y  e.  RR  ->  F/_ x L )
194 itgsubst.l . . . . . . . . . . . . . . 15  |-  ( x  =  Y  ->  A  =  L )
195193, 194csbiegf 3419 . . . . . . . . . . . . . 14  |-  ( Y  e.  RR  ->  [_ Y  /  x ]_ A  =  L )
196 ditgeq2 22790 . . . . . . . . . . . . . 14  |-  ( [_ Y  /  x ]_ A  =  L  ->  S__ [ K  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__ [ K  ->  L ] C  _d u )
1972, 195, 1963syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ K  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__ [ K  ->  L ] C  _d u )
198192, 197eqtrd 2463 . . . . . . . . . . . 12  |-  ( ph  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__ [ K  ->  L ] C  _d u )
199187, 198syl5eqr 2477 . . . . . . . . . . 11  |-  ( ph  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] [_ v  /  u ]_ C  _d v  =  S__ [ K  ->  L ] C  _d u )
200199adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] [_ v  /  u ]_ C  _d v  =  S__ [ K  ->  L ] C  _d u )
201154csbeq1d 3402 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  [_ A  /  u ]_ C  = 
[_ [_ y  /  x ]_ A  /  u ]_ C )
202201, 160oveq12d 6319 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( [_ A  /  u ]_ C  x.  B
)  =  ( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B ) )
203 nfcv 2584 . . . . . . . . . . . . 13  |-  F/_ y
( [_ A  /  u ]_ C  x.  B
)
204 nfcv 2584 . . . . . . . . . . . . . . 15  |-  F/_ x C
205153, 204nfcsb 3413 . . . . . . . . . . . . . 14  |-  F/_ x [_ [_ y  /  x ]_ A  /  u ]_ C
206 nfcv 2584 . . . . . . . . . . . . . 14  |-  F/_ x  x.
207205, 206, 159nfov 6327 . . . . . . . . . . . . 13  |-  F/_ x
( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B )
208202, 203, 207cbvditg 22795 . . . . . . . . . . . 12  |-  S__ [ X  ->  Y ] (
[_ A  /  u ]_ C  x.  B
)  _d x  =  S__ [ X  ->  Y ] ( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B
)  _d y
209 ioossicc 11720 . . . . . . . . . . . . . . . . . 18  |-  ( X (,) Y )  C_  ( X [,] Y )
210209sseli 3460 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( X (,) Y )  ->  x  e.  ( X [,] Y
) )
211210, 140sylan2 476 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  ( Z (,) W ) )
212 nfcvd 2585 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ( Z (,) W )  ->  F/_ u E )
213 itgsubst.e . . . . . . . . . . . . . . . . 17  |-  ( u  =  A  ->  C  =  E )
214212, 213csbiegf 3419 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( Z (,) W )  ->  [_ A  /  u ]_ C  =  E )
215211, 214syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  [_ A  /  u ]_ C  =  E )
216215oveq1d 6316 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( [_ A  /  u ]_ C  x.  B )  =  ( E  x.  B ) )
217216itgeq2dv 22725 . . . . . . . . . . . . 13  |-  ( ph  ->  S. ( X (,) Y ) ( [_ A  /  u ]_ C  x.  B )  _d x  =  S. ( X (,) Y ) ( E  x.  B )  _d x )
2183ditgpos 22797 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ X  ->  Y ] ( [_ A  /  u ]_ C  x.  B )  _d x  =  S. ( X (,) Y ) (
[_ A  /  u ]_ C  x.  B
)  _d x )
2193ditgpos 22797 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ X  ->  Y ] ( E  x.  B )  _d x  =  S. ( X (,) Y ) ( E  x.  B )  _d x )
220217, 218, 2193eqtr4d 2473 . . . . . . . . . . . 12  |-  ( ph  ->  S__ [ X  ->  Y ] ( [_ A  /  u ]_ C  x.  B )  _d x  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
221208, 220syl5eqr 2477 . . . . . . . . . . 11  |-  ( ph  ->  S__ [ X  ->  Y ] ( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B
)  _d y  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
222221adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  S__ [ X  ->  Y ] ( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B )  _d y  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
223186, 200, 2223eqtr3d 2471 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
224223expr 618 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. x  e.  ( X [,] Y ) A  e.  ( m (,) n )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
225146, 224sylbid 218 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  ( m (,) n )  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x ) )
226129, 225sylbid 218 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  /\  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
227117, 226syl5bir 221 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  (
( A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
228227rexlimdvva 2924 . . . 4  |-  ( ph  ->  ( E. m  e.  ( Z (,) W
) E. n  e.  ( Z (,) W
) ( A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
229116, 228syl5bi 220 . . 3  |-  ( ph  ->  ( ( E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n  /\  E. m  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
23065, 113, 229syl2and 485 . 2  |-  ( ph  ->  ( ( E. y  e.  ( X [,] Y
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  E. y  e.  ( X [,] Y ) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) )  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x ) )
23110, 230mpd 15 1  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   A.wral 2775   E.wrex 2776   [_csb 3395    i^i cin 3435    C_ wss 3436   class class class wbr 4420    |-> cmpt 4479   -->wf 5593   ` cfv 5597  (class class class)co 6301   CCcc 9537   RRcr 9538    x. cmul 9544   RR*cxr 9674    < clt 9675    <_ cle 9676   QQcq 11264   (,)cioo 11635   [,]cicc 11638   -cn->ccncf 21894   L^1cibl 22561   S.citg 22562   S__cdit 22787    _D cdv 22804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-inf2 8148  ax-cc 8865  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-disj 4392  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-of 6541  df-ofr 6542  df-om 6703  df-1st 6803  df-2nd 6804  df-supp 6922  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-2o 7187  df-oadd 7190  df-omul 7191  df-er 7367  df-map 7478  df-pm 7479  df-ixp 7527  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-fsupp 7886  df-fi 7927  df-sup 7958  df-inf 7959  df-oi 8027  df-card 8374  df-acn 8377  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12027  df-mod 12096  df-seq 12213  df-exp 12272  df-hash 12515  df-cj 13150  df-re 13151  df-im 13152  df-sqrt 13286  df-abs 13287  df-limsup 13513  df-clim 13539  df-rlim 13540  df-sum 13740  df-struct 15110  df-ndx 15111  df-slot 15112  df-base 15113  df-sets 15114  df-ress 15115  df-plusg 15190  df-mulr 15191  df-starv 15192  df-sca 15193  df-vsca 15194  df-ip 15195  df-tset 15196  df-ple 15197  df-ds 15199  df-unif 15200  df-hom 15201  df-cco 15202  df-rest 15308  df-topn 15309  df-0g 15327  df-gsum 15328  df-topgen 15329  df-pt 15330  df-prds 15333  df-xrs 15387  df-qtop 15393  df-imas 15394  df-xps 15397  df-mre 15479  df-mrc 15480  df-acs 15482  df-mgm 16475  df-sgrp 16514  df-mnd 16524  df-submnd 16570  df-mulg 16663  df-cntz 16958  df-cmn 17419  df-psmet 18949  df-xmet 18950  df-met 18951  df-bl 18952  df-mopn 18953  df-fbas 18954  df-fg 18955  df-cnfld 18958  df-top 19907  df-bases 19908  df-topon 19909  df-topsp 19910  df-cld 20020  df-ntr 20021  df-cls 20022  df-nei 20100  df-lp 20138  df-perf 20139  df-cn 20229  df-cnp 20230  df-haus 20317  df-cmp 20388  df-tx 20563  df-hmeo 20756  df-fil 20847  df-fm 20939  df-flim 20940  df-flf 20941  df-xms 21321  df-ms 21322  df-tms 21323  df-cncf 21896  df-ovol 22402  df-vol 22404  df-mbf 22563  df-itg1 22564  df-itg2 22565  df-ibl 22566  df-itg 22567  df-0p 22614  df-ditg 22788  df-limc 22807  df-dv 22808
This theorem is referenced by:  itgsubsticclem  37671
  Copyright terms: Public domain W3C validator