MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsubst Structured version   Visualization version   Unicode version

Theorem itgsubst 23080
Description: Integration by  u-substitution. If  A ( x ) is a continuous, differentiable function from  [ X ,  Y ] to  ( Z ,  W ), whose derivative is continuous and integrable, and  C ( u ) is a continuous function on  ( Z ,  W ), then the integral of  C ( u ) from  K  =  A ( X ) to  L  =  A ( Y ) is equal to the integral of  C ( A ( x ) )  _D  A ( x ) from  X to  Y. In this part of the proof we discharge the assumptions in itgsubstlem 23079, which use the fact that  ( Z ,  W ) is open to shrink the interval a little to  ( M ,  N ) where  Z  <  M  <  N  <  W- this is possible because  A ( x ) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
itgsubst.x  |-  ( ph  ->  X  e.  RR )
itgsubst.y  |-  ( ph  ->  Y  e.  RR )
itgsubst.le  |-  ( ph  ->  X  <_  Y )
itgsubst.z  |-  ( ph  ->  Z  e.  RR* )
itgsubst.w  |-  ( ph  ->  W  e.  RR* )
itgsubst.a  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
itgsubst.b  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
itgsubst.c  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC ) )
itgsubst.da  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
itgsubst.e  |-  ( u  =  A  ->  C  =  E )
itgsubst.k  |-  ( x  =  X  ->  A  =  K )
itgsubst.l  |-  ( x  =  Y  ->  A  =  L )
Assertion
Ref Expression
itgsubst  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Distinct variable groups:    u, E    x, u, K    ph, u, x   
u, X, x    u, Y, x    u, A    x, C    u, W, x    u, L, x    u, Z, x
Allowed substitution hints:    A( x)    B( x, u)    C( u)    E( x)

Proof of Theorem itgsubst
Dummy variables  m  n  y  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgsubst.x . . 3  |-  ( ph  ->  X  e.  RR )
2 itgsubst.y . . 3  |-  ( ph  ->  Y  e.  RR )
3 itgsubst.le . . 3  |-  ( ph  ->  X  <_  Y )
4 ioossre 11721 . . . . 5  |-  ( Z (,) W )  C_  RR
5 ax-resscn 9614 . . . . 5  |-  RR  C_  CC
6 cncfss 22009 . . . . 5  |-  ( ( ( Z (,) W
)  C_  RR  /\  RR  C_  CC )  ->  (
( X [,] Y
) -cn-> ( Z (,) W ) )  C_  ( ( X [,] Y ) -cn-> RR ) )
74, 5, 6mp2an 686 . . . 4  |-  ( ( X [,] Y )
-cn-> ( Z (,) W
) )  C_  (
( X [,] Y
) -cn-> RR )
8 itgsubst.a . . . 4  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
97, 8sseldi 3416 . . 3  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> RR ) )
101, 2, 3, 9evthicc 22488 . 2  |-  ( ph  ->  ( E. y  e.  ( X [,] Y
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  E. y  e.  ( X [,] Y ) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )
11 ressxr 9702 . . . . . . . 8  |-  RR  C_  RR*
124, 11sstri 3427 . . . . . . 7  |-  ( Z (,) W )  C_  RR*
13 cncff 22003 . . . . . . . . . 10  |-  ( ( x  e.  ( X [,] Y )  |->  A )  e.  ( ( X [,] Y )
-cn-> ( Z (,) W
) )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )
148, 13syl 17 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( Z (,) W
) )
1514adantr 472 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( Z (,) W ) )
16 simprl 772 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  y  e.  ( X [,] Y ) )
1715, 16ffvelrnd 6038 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  e.  ( Z (,) W
) )
1812, 17sseldi 3416 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  e. 
RR* )
19 itgsubst.w . . . . . . 7  |-  ( ph  ->  W  e.  RR* )
2019adantr 472 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  W  e.  RR* )
21 eliooord 11719 . . . . . . . 8  |-  ( ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  ( Z (,) W )  -> 
( Z  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  /\  ( (
x  e.  ( X [,] Y )  |->  A ) `  y )  <  W ) )
2217, 21syl 17 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( Z  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <  W )
)
2322simprd 470 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
W )
24 qbtwnxr 11516 . . . . . 6  |-  ( ( ( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR*  /\  W  e.  RR*  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <  W )  ->  E. n  e.  QQ  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) )
2518, 20, 23, 24syl3anc 1292 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  E. n  e.  QQ  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) )
26 qre 11292 . . . . . . . . . 10  |-  ( n  e.  QQ  ->  n  e.  RR )
2726ad2antrl 742 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  e.  RR )
28 itgsubst.z . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  RR* )
2928ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  Z  e.  RR* )
3018adantr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR* )
3127rexrd 9708 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  e.  RR* )
3222simpld 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  Z  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
) )
3332adantr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  Z  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) )
34 simprrl 782 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)
3529, 30, 31, 33, 34xrlttrd 11479 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  Z  <  n )
36 simprrr 783 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  <  W )
3719ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  W  e.  RR* )
38 elioo2 11702 . . . . . . . . . 10  |-  ( ( Z  e.  RR*  /\  W  e.  RR* )  ->  (
n  e.  ( Z (,) W )  <->  ( n  e.  RR  /\  Z  < 
n  /\  n  <  W ) ) )
3929, 37, 38syl2anc 673 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( n  e.  ( Z (,) W )  <-> 
( n  e.  RR  /\  Z  <  n  /\  n  <  W ) ) )
4027, 35, 36, 39mpbir3and 1213 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  e.  ( Z (,) W ) )
41 anass 661 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  <_  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) )  <-> 
( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )
42 simprrl 782 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)
4342adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)
4414ad2antrr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( Z (,) W
) )
4544ffvelrnda 6037 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( Z (,) W ) )
4612, 45sseldi 3416 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  RR* )
47 simplr 770 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
y  e.  ( X [,] Y ) )
4844, 47ffvelrnd 6038 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  ( Z (,) W ) )
4912, 48sseldi 3416 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR* )
5049adantr 472 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR* )
5126ad2antrl 742 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  n  e.  RR )
5251adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  n  e.  RR )
5352rexrd 9708 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  n  e.  RR* )
54 xrlelttr 11476 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  RR*  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR*  /\  n  e.  RR* )  ->  ( ( ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  <_  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  <  n ) )
5546, 50, 53, 54syl3anc 1292 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  <_  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n
)  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  <  n ) )
5643, 55mpan2d 688 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <  n )
)
5756ralimdva 2805 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  ->  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
5857imp 436 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) )  ->  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )
5958an32s 821 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) )  /\  ( n  e.  QQ  /\  (
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n  /\  n  <  W ) ) )  ->  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )
6041, 59sylanbr 481 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  ->  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <  n )
6140, 60jca 541 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  y ) ) )  /\  (
n  e.  QQ  /\  ( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
n  /\  n  <  W ) ) )  -> 
( n  e.  ( Z (,) W )  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
6261ex 441 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( ( n  e.  QQ  /\  (
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  <  n  /\  n  <  W ) )  ->  ( n  e.  ( Z (,) W
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) ) )
6362reximdv2 2855 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( E. n  e.  QQ  ( ( ( x  e.  ( X [,] Y )  |->  A ) `  y )  <  n  /\  n  <  W )  ->  E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
6425, 63mpd 15 . . . 4  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  E. n  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n
)
6564rexlimdvaa 2872 . . 3  |-  ( ph  ->  ( E. y  e.  ( X [,] Y
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  ->  E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
6628adantr 472 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  Z  e.  RR* )
6714adantr 472 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( Z (,) W ) )
68 simprl 772 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  y  e.  ( X [,] Y ) )
6967, 68ffvelrnd 6038 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  e.  ( Z (,) W
) )
7012, 69sseldi 3416 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  e. 
RR* )
7169, 21syl 17 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( Z  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <  W )
)
7271simpld 466 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  Z  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
) )
73 qbtwnxr 11516 . . . . . 6  |-  ( ( Z  e.  RR*  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  RR*  /\  Z  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) )  ->  E. m  e.  QQ  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) )
7466, 70, 72, 73syl3anc 1292 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  E. m  e.  QQ  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) )
75 qre 11292 . . . . . . . . . 10  |-  ( m  e.  QQ  ->  m  e.  RR )
7675ad2antrl 742 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  e.  RR )
77 simprrl 782 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  Z  <  m )
7876rexrd 9708 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  e.  RR* )
7970adantr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  RR* )
8019ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  W  e.  RR* )
81 simprrr 783 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) )
8271simprd 470 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  < 
W )
8382adantr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <  W )
8478, 79, 80, 81, 83xrlttrd 11479 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  <  W )
8528ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  Z  e.  RR* )
86 elioo2 11702 . . . . . . . . . 10  |-  ( ( Z  e.  RR*  /\  W  e.  RR* )  ->  (
m  e.  ( Z (,) W )  <->  ( m  e.  RR  /\  Z  < 
m  /\  m  <  W ) ) )
8785, 80, 86syl2anc 673 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
m  e.  ( Z (,) W )  <->  ( m  e.  RR  /\  Z  < 
m  /\  m  <  W ) ) )
8876, 77, 84, 87mpbir3and 1213 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  e.  ( Z (,) W
) )
89 anass 661 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y )  |->  A ) `  y )  <_  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z ) )  <-> 
( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) ) )
90 simprrr 783 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) )
9190adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) )
9275ad2antrl 742 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  m  e.  RR )
9392adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  e.  RR )
9493rexrd 9708 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  e.  RR* )
9514ad2antrr 740 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )
96 simplr 770 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  y  e.  ( X [,] Y
) )
9795, 96ffvelrnd 6038 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  ( Z (,) W ) )
9812, 97sseldi 3416 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  RR* )
9998adantr 472 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  e.  RR* )
10095ffvelrnda 6037 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( Z (,) W ) )
10112, 100sseldi 3416 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  RR* )
102 xrltletr 11477 . . . . . . . . . . . . . 14  |-  ( ( m  e.  RR*  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  e.  RR*  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  RR* )  ->  ( ( m  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) )  ->  m  <  ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) )
10394, 99, 101, 102syl3anc 1292 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( m  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) )  ->  m  <  ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) )
10491, 103mpand 689 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  z  e.  ( X [,] Y ) )  -> 
( ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  ->  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )
105104ralimdva 2805 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( X [,] Y
) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  ->  A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z ) ) )
106105imp 436 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  y ) ) ) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) )  ->  A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) )
107106an32s 821 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  ( X [,] Y ) )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) )  /\  ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) ) )  ->  A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) )
10889, 107sylanbr 481 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) )
10988, 108jca 541 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( X [,] Y )  /\  A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
)  <_  ( (
x  e.  ( X [,] Y )  |->  A ) `  z ) ) )  /\  (
m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 y ) ) ) )  ->  (
m  e.  ( Z (,) W )  /\  A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z ) ) )
110109ex 441 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( ( m  e.  QQ  /\  ( Z  <  m  /\  m  <  ( ( x  e.  ( X [,] Y
)  |->  A ) `  y ) ) )  ->  ( m  e.  ( Z (,) W
)  /\  A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) ) )
111110reximdv2 2855 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  ( E. m  e.  QQ  ( Z  < 
m  /\  m  <  ( ( x  e.  ( X [,] Y ) 
|->  A ) `  y
) )  ->  E. m  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) )
11274, 111mpd 15 . . . 4  |-  ( (
ph  /\  ( y  e.  ( X [,] Y
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) ) )  ->  E. m  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z ) )
113112rexlimdvaa 2872 . . 3  |-  ( ph  ->  ( E. y  e.  ( X [,] Y
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  ->  E. m  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) ) )
114 ancom 457 . . . . 5  |-  ( ( E. n  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n  /\  E. m  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z ) )  <->  ( E. m  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
115 reeanv 2944 . . . . 5  |-  ( E. m  e.  ( Z (,) W ) E. n  e.  ( Z (,) W ) ( A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  <->  ( E. m  e.  ( Z (,) W ) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
116114, 115bitr4i 260 . . . 4  |-  ( ( E. n  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n  /\  E. m  e.  ( Z (,) W ) A. z  e.  ( X [,] Y ) m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z ) )  <->  E. m  e.  ( Z (,) W ) E. n  e.  ( Z (,) W ) ( A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
117 r19.26 2904 . . . . . 6  |-  ( A. z  e.  ( X [,] Y ) ( m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n
)  <->  ( A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n ) )
11814adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> ( Z (,) W ) )
119118ffvelrnda 6037 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  e.  ( Z (,) W ) )
1204, 119sseldi 3416 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  e.  RR )
1211203biant1d 1406 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
m  <  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  /\  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  <->  ( (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  RR  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n
) ) )
122 simplrl 778 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  e.  ( Z (,) W ) )
12312, 122sseldi 3416 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  m  e.  RR* )
124 simplrr 779 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  n  e.  ( Z (,) W ) )
12512, 124sseldi 3416 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  n  e.  RR* )
126 elioo2 11702 . . . . . . . . . 10  |-  ( ( m  e.  RR*  /\  n  e.  RR* )  ->  (
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( m (,) n )  <-> 
( ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  e.  RR  /\  m  < 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  /\  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  <  n )
) )
127123, 125, 126syl2anc 673 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  ( m (,) n )  <->  ( (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  RR  /\  m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  /\  ( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  <  n
) ) )
128121, 127bitr4d 264 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) ) )  /\  z  e.  ( X [,] Y ) )  ->  ( (
m  <  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  /\  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  <->  ( (
x  e.  ( X [,] Y )  |->  A ) `  z )  e.  ( m (,) n ) ) )
129128ralbidva 2828 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  /\  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  <->  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  e.  ( m (,) n
) ) )
130 nffvmpt1 5887 . . . . . . . . . . . 12  |-  F/_ x
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )
131130nfel1 2626 . . . . . . . . . . 11  |-  F/ x
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( m (,) n )
132 nfv 1769 . . . . . . . . . . 11  |-  F/ z ( ( x  e.  ( X [,] Y
)  |->  A ) `  x )  e.  ( m (,) n )
133 fveq2 5879 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  =  ( ( x  e.  ( X [,] Y )  |->  A ) `  x ) )
134133eleq1d 2533 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
( ( x  e.  ( X [,] Y
)  |->  A ) `  z )  e.  ( m (,) n )  <-> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  x )  e.  ( m (,) n ) ) )
135131, 132, 134cbvral 3001 . . . . . . . . . 10  |-  ( A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  e.  ( m (,) n )  <->  A. x  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 x )  e.  ( m (,) n
) )
136 simpr 468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  x  e.  ( X [,] Y ) )
137 eqid 2471 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( x  e.  ( X [,] Y
)  |->  A )
138137fmpt 6058 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  ( X [,] Y ) A  e.  ( Z (,) W
)  <->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( Z (,) W ) )
13914, 138sylibr 217 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. x  e.  ( X [,] Y ) A  e.  ( Z (,) W ) )
140139r19.21bi 2776 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  ( Z (,) W ) )
141137fvmpt2 5972 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( X [,] Y )  /\  A  e.  ( Z (,) W ) )  -> 
( ( x  e.  ( X [,] Y
)  |->  A ) `  x )  =  A )
142136, 140, 141syl2anc 673 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( (
x  e.  ( X [,] Y )  |->  A ) `  x )  =  A )
143142eleq1d 2533 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( (
( x  e.  ( X [,] Y ) 
|->  A ) `  x
)  e.  ( m (,) n )  <->  A  e.  ( m (,) n
) ) )
144143ralbidva 2828 . . . . . . . . . 10  |-  ( ph  ->  ( A. x  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 x )  e.  ( m (,) n
)  <->  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )
145135, 144syl5bb 265 . . . . . . . . 9  |-  ( ph  ->  ( A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  e.  ( m (,) n
)  <->  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )
146145adantr 472 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  ( m (,) n )  <->  A. x  e.  ( X [,] Y
) A  e.  ( m (,) n ) ) )
1471adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  X  e.  RR )
1482adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  Y  e.  RR )
1493adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  X  <_  Y
)
15028adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  Z  e.  RR* )
15119adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  W  e.  RR* )
152 nfcv 2612 . . . . . . . . . . . . . 14  |-  F/_ y A
153 nfcsb1v 3365 . . . . . . . . . . . . . 14  |-  F/_ x [_ y  /  x ]_ A
154 csbeq1a 3358 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  A  =  [_ y  /  x ]_ A )
155152, 153, 154cbvmpt 4487 . . . . . . . . . . . . 13  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( y  e.  ( X [,] Y
)  |->  [_ y  /  x ]_ A )
156155, 8syl5eqelr 2554 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  e.  ( X [,] Y ) 
|->  [_ y  /  x ]_ A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
157156adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  ( y  e.  ( X [,] Y
)  |->  [_ y  /  x ]_ A )  e.  ( ( X [,] Y
) -cn-> ( Z (,) W ) ) )
158 nfcv 2612 . . . . . . . . . . . . . 14  |-  F/_ y B
159 nfcsb1v 3365 . . . . . . . . . . . . . 14  |-  F/_ x [_ y  /  x ]_ B
160 csbeq1a 3358 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
161158, 159, 160cbvmpt 4487 . . . . . . . . . . . . 13  |-  ( x  e.  ( X (,) Y )  |->  B )  =  ( y  e.  ( X (,) Y
)  |->  [_ y  /  x ]_ B )
162 itgsubst.b . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
163161, 162syl5eqelr 2554 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  e.  ( X (,) Y ) 
|->  [_ y  /  x ]_ B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
164163adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  ( y  e.  ( X (,) Y
)  |->  [_ y  /  x ]_ B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
165 nfcv 2612 . . . . . . . . . . . . . 14  |-  F/_ v C
166 nfcsb1v 3365 . . . . . . . . . . . . . 14  |-  F/_ u [_ v  /  u ]_ C
167 csbeq1a 3358 . . . . . . . . . . . . . 14  |-  ( u  =  v  ->  C  =  [_ v  /  u ]_ C )
168165, 166, 167cbvmpt 4487 . . . . . . . . . . . . 13  |-  ( u  e.  ( Z (,) W )  |->  C )  =  ( v  e.  ( Z (,) W
)  |->  [_ v  /  u ]_ C )
169 itgsubst.c . . . . . . . . . . . . 13  |-  ( ph  ->  ( u  e.  ( Z (,) W ) 
|->  C )  e.  ( ( Z (,) W
) -cn-> CC ) )
170168, 169syl5eqelr 2554 . . . . . . . . . . . 12  |-  ( ph  ->  ( v  e.  ( Z (,) W ) 
|->  [_ v  /  u ]_ C )  e.  ( ( Z (,) W
) -cn-> CC ) )
171170adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  ( v  e.  ( Z (,) W
)  |->  [_ v  /  u ]_ C )  e.  ( ( Z (,) W
) -cn-> CC ) )
172 itgsubst.da . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
173155oveq2i 6319 . . . . . . . . . . . . 13  |-  ( RR 
_D  ( x  e.  ( X [,] Y
)  |->  A ) )  =  ( RR  _D  ( y  e.  ( X [,] Y ) 
|->  [_ y  /  x ]_ A ) )
174172, 173, 1613eqtr3g 2528 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR  _D  (
y  e.  ( X [,] Y )  |->  [_ y  /  x ]_ A
) )  =  ( y  e.  ( X (,) Y )  |->  [_ y  /  x ]_ B
) )
175174adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  ( RR  _D  ( y  e.  ( X [,] Y ) 
|->  [_ y  /  x ]_ A ) )  =  ( y  e.  ( X (,) Y ) 
|->  [_ y  /  x ]_ B ) )
176 csbeq1 3352 . . . . . . . . . . 11  |-  ( v  =  [_ y  /  x ]_ A  ->  [_ v  /  u ]_ C  = 
[_ [_ y  /  x ]_ A  /  u ]_ C )
177 csbeq1 3352 . . . . . . . . . . 11  |-  ( y  =  X  ->  [_ y  /  x ]_ A  = 
[_ X  /  x ]_ A )
178 csbeq1 3352 . . . . . . . . . . 11  |-  ( y  =  Y  ->  [_ y  /  x ]_ A  = 
[_ Y  /  x ]_ A )
179 simprll 780 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  m  e.  ( Z (,) W ) )
180 simprlr 781 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  n  e.  ( Z (,) W ) )
181 simprr 774 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) )
182153nfel1 2626 . . . . . . . . . . . . 13  |-  F/ x [_ y  /  x ]_ A  e.  (
m (,) n )
183154eleq1d 2533 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( A  e.  ( m (,) n )  <->  [_ y  /  x ]_ A  e.  ( m (,) n ) ) )
184182, 183rspc 3130 . . . . . . . . . . . 12  |-  ( y  e.  ( X [,] Y )  ->  ( A. x  e.  ( X [,] Y ) A  e.  ( m (,) n )  ->  [_ y  /  x ]_ A  e.  ( m (,) n
) ) )
185181, 184mpan9 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y
) A  e.  ( m (,) n ) ) )  /\  y  e.  ( X [,] Y
) )  ->  [_ y  /  x ]_ A  e.  ( m (,) n
) )
186147, 148, 149, 150, 151, 157, 164, 171, 175, 176, 177, 178, 179, 180, 185itgsubstlem 23079 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] [_ v  /  u ]_ C  _d v  =  S__ [ X  ->  Y ] (
[_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B )  _d y )
187167, 165, 166cbvditg 22888 . . . . . . . . . . . 12  |-  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__
[ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] [_ v  /  u ]_ C  _d v
188 nfcvd 2613 . . . . . . . . . . . . . . 15  |-  ( X  e.  RR  ->  F/_ x K )
189 itgsubst.k . . . . . . . . . . . . . . 15  |-  ( x  =  X  ->  A  =  K )
190188, 189csbiegf 3373 . . . . . . . . . . . . . 14  |-  ( X  e.  RR  ->  [_ X  /  x ]_ A  =  K )
191 ditgeq1 22882 . . . . . . . . . . . . . 14  |-  ( [_ X  /  x ]_ A  =  K  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__
[ K  ->  [_ Y  /  x ]_ A ] C  _d u )
1921, 190, 1913syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__ [ K  ->  [_ Y  /  x ]_ A ] C  _d u )
193 nfcvd 2613 . . . . . . . . . . . . . . 15  |-  ( Y  e.  RR  ->  F/_ x L )
194 itgsubst.l . . . . . . . . . . . . . . 15  |-  ( x  =  Y  ->  A  =  L )
195193, 194csbiegf 3373 . . . . . . . . . . . . . 14  |-  ( Y  e.  RR  ->  [_ Y  /  x ]_ A  =  L )
196 ditgeq2 22883 . . . . . . . . . . . . . 14  |-  ( [_ Y  /  x ]_ A  =  L  ->  S__ [ K  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__ [ K  ->  L ] C  _d u )
1972, 195, 1963syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ K  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__ [ K  ->  L ] C  _d u )
198192, 197eqtrd 2505 . . . . . . . . . . . 12  |-  ( ph  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] C  _d u  =  S__ [ K  ->  L ] C  _d u )
199187, 198syl5eqr 2519 . . . . . . . . . . 11  |-  ( ph  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] [_ v  /  u ]_ C  _d v  =  S__ [ K  ->  L ] C  _d u )
200199adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  S__ [ [_ X  /  x ]_ A  ->  [_ Y  /  x ]_ A ] [_ v  /  u ]_ C  _d v  =  S__ [ K  ->  L ] C  _d u )
201154csbeq1d 3356 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  [_ A  /  u ]_ C  = 
[_ [_ y  /  x ]_ A  /  u ]_ C )
202201, 160oveq12d 6326 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( [_ A  /  u ]_ C  x.  B
)  =  ( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B ) )
203 nfcv 2612 . . . . . . . . . . . . 13  |-  F/_ y
( [_ A  /  u ]_ C  x.  B
)
204 nfcv 2612 . . . . . . . . . . . . . . 15  |-  F/_ x C
205153, 204nfcsb 3367 . . . . . . . . . . . . . 14  |-  F/_ x [_ [_ y  /  x ]_ A  /  u ]_ C
206 nfcv 2612 . . . . . . . . . . . . . 14  |-  F/_ x  x.
207205, 206, 159nfov 6334 . . . . . . . . . . . . 13  |-  F/_ x
( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B )
208202, 203, 207cbvditg 22888 . . . . . . . . . . . 12  |-  S__ [ X  ->  Y ] (
[_ A  /  u ]_ C  x.  B
)  _d x  =  S__ [ X  ->  Y ] ( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B
)  _d y
209 ioossicc 11745 . . . . . . . . . . . . . . . . . 18  |-  ( X (,) Y )  C_  ( X [,] Y )
210209sseli 3414 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( X (,) Y )  ->  x  e.  ( X [,] Y
) )
211210, 140sylan2 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  ( Z (,) W ) )
212 nfcvd 2613 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ( Z (,) W )  ->  F/_ u E )
213 itgsubst.e . . . . . . . . . . . . . . . . 17  |-  ( u  =  A  ->  C  =  E )
214212, 213csbiegf 3373 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( Z (,) W )  ->  [_ A  /  u ]_ C  =  E )
215211, 214syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  [_ A  /  u ]_ C  =  E )
216215oveq1d 6323 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( [_ A  /  u ]_ C  x.  B )  =  ( E  x.  B ) )
217216itgeq2dv 22818 . . . . . . . . . . . . 13  |-  ( ph  ->  S. ( X (,) Y ) ( [_ A  /  u ]_ C  x.  B )  _d x  =  S. ( X (,) Y ) ( E  x.  B )  _d x )
2183ditgpos 22890 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ X  ->  Y ] ( [_ A  /  u ]_ C  x.  B )  _d x  =  S. ( X (,) Y ) (
[_ A  /  u ]_ C  x.  B
)  _d x )
2193ditgpos 22890 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ X  ->  Y ] ( E  x.  B )  _d x  =  S. ( X (,) Y ) ( E  x.  B )  _d x )
220217, 218, 2193eqtr4d 2515 . . . . . . . . . . . 12  |-  ( ph  ->  S__ [ X  ->  Y ] ( [_ A  /  u ]_ C  x.  B )  _d x  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
221208, 220syl5eqr 2519 . . . . . . . . . . 11  |-  ( ph  ->  S__ [ X  ->  Y ] ( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B
)  _d y  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
222221adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  S__ [ X  ->  Y ] ( [_ [_ y  /  x ]_ A  /  u ]_ C  x.  [_ y  /  x ]_ B )  _d y  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
223186, 200, 2223eqtr3d 2513 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  ( Z (,) W )  /\  n  e.  ( Z (,) W ) )  /\  A. x  e.  ( X [,] Y ) A  e.  ( m (,) n ) ) )  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
224223expr 626 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. x  e.  ( X [,] Y ) A  e.  ( m (,) n )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
225146, 224sylbid 223 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( ( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  e.  ( m (,) n )  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x ) )
226129, 225sylbid 223 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  ( A. z  e.  ( X [,] Y ) ( m  <  ( ( x  e.  ( X [,] Y )  |->  A ) `  z )  /\  ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
227117, 226syl5bir 226 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Z (,) W
)  /\  n  e.  ( Z (,) W ) ) )  ->  (
( A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
228227rexlimdvva 2878 . . . 4  |-  ( ph  ->  ( E. m  e.  ( Z (,) W
) E. n  e.  ( Z (,) W
) ( A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
)  /\  A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
229116, 228syl5bi 225 . . 3  |-  ( ph  ->  ( ( E. n  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  < 
n  /\  E. m  e.  ( Z (,) W
) A. z  e.  ( X [,] Y
) m  <  (
( x  e.  ( X [,] Y ) 
|->  A ) `  z
) )  ->  S__ [ K  ->  L ] C  _d u  =  S__
[ X  ->  Y ] ( E  x.  B )  _d x ) )
23065, 113, 229syl2and 491 . 2  |-  ( ph  ->  ( ( E. y  e.  ( X [,] Y
) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 z )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  y )  /\  E. y  e.  ( X [,] Y ) A. z  e.  ( X [,] Y
) ( ( x  e.  ( X [,] Y )  |->  A ) `
 y )  <_ 
( ( x  e.  ( X [,] Y
)  |->  A ) `  z ) )  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x ) )
23110, 230mpd 15 1  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757   [_csb 3349    i^i cin 3389    C_ wss 3390   class class class wbr 4395    |-> cmpt 4454   -->wf 5585   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556    x. cmul 9562   RR*cxr 9692    < clt 9693    <_ cle 9694   QQcq 11287   (,)cioo 11660   [,]cicc 11663   -cn->ccncf 21986   L^1cibl 22654   S.citg 22655   S__cdit 22880    _D cdv 22897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cc 8883  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-disj 4367  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-ofr 6551  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-omul 7205  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-cmp 20479  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-ovol 22494  df-vol 22496  df-mbf 22656  df-itg1 22657  df-itg2 22658  df-ibl 22659  df-itg 22660  df-0p 22707  df-ditg 22881  df-limc 22900  df-dv 22901
This theorem is referenced by:  itgsubsticclem  37949
  Copyright terms: Public domain W3C validator