MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgss Structured version   Unicode version

Theorem itgss 21948
Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgss.1  |-  ( ph  ->  A  C_  B )
itgss.2  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  = 
0 )
Assertion
Ref Expression
itgss  |-  ( ph  ->  S. A C  _d x  =  S. B C  _d x )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem itgss
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfzelz 11679 . . . 4  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
2 iffalse 3943 . . . . . . . . . . . . . 14  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  0 )
32ad2antll 728 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
x  e.  B  /\  -.  x  e.  A
) )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  0 )
4 eldif 3481 . . . . . . . . . . . . . 14  |-  ( x  e.  ( B  \  A )  <->  ( x  e.  B  /\  -.  x  e.  A ) )
5 itgss.2 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  = 
0 )
65adantlr 714 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  C  =  0 )
76oveq1d 6292 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  ( C  /  ( _i ^
k ) )  =  ( 0  /  (
_i ^ k ) ) )
8 ax-icn 9542 . . . . . . . . . . . . . . . . . . . . . 22  |-  _i  e.  CC
9 ine0 9983 . . . . . . . . . . . . . . . . . . . . . 22  |-  _i  =/=  0
10 expclz 12149 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
118, 9, 10mp3an12 1309 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ZZ  ->  (
_i ^ k )  e.  CC )
12 expne0i 12155 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
138, 9, 12mp3an12 1309 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
1411, 13div0d 10310 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ZZ  ->  (
0  /  ( _i
^ k ) )  =  0 )
1514ad2antlr 726 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  (
0  /  ( _i
^ k ) )  =  0 )
167, 15eqtrd 2503 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  ( C  /  ( _i ^
k ) )  =  0 )
1716fveq2d 5863 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re ` 
0 ) )
18 re0 12937 . . . . . . . . . . . . . . . . 17  |-  ( Re
`  0 )  =  0
1917, 18syl6eq 2519 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  0 )
2019ifeq1d 3952 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ,  0 ) )
21 ifid 3971 . . . . . . . . . . . . . . 15  |-  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ,  0 )  =  0
2220, 21syl6eq 2519 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  0 )
234, 22sylan2br 476 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
x  e.  B  /\  -.  x  e.  A
) )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  0 )
243, 23eqtr4d 2506 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
x  e.  B  /\  -.  x  e.  A
) )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
2524expr 615 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  B )  ->  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )
26 iftrue 3940 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
2725, 26pm2.61d2 160 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  B )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
28 iftrue 3940 . . . . . . . . . . 11  |-  ( x  e.  B  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
2928adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  B )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
3027, 29eqtr4d 2506 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  B )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
31 itgss.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  B )
3231adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ZZ )  ->  A  C_  B )
3332sseld 3498 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( x  e.  A  ->  x  e.  B ) )
3433con3dimp 441 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  -.  x  e.  B )  ->  -.  x  e.  A
)
3534, 2syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  -.  x  e.  B )  ->  if ( x  e.  A ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  0 )
36 iffalse 3943 . . . . . . . . . . 11  |-  ( -.  x  e.  B  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  0 )
3736adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  -.  x  e.  B )  ->  if ( x  e.  B ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  0 )
3835, 37eqtr4d 2506 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  -.  x  e.  B )  ->  if ( x  e.  A ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
3930, 38pm2.61dan 789 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
40 ifan 3980 . . . . . . . 8  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
41 ifan 3980 . . . . . . . 8  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
4239, 40, 413eqtr4g 2528 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )
4342mpteq2dv 4529 . . . . . 6  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
4443fveq2d 5863 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
4544oveq2d 6293 . . . 4  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
461, 45sylan2 474 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
4746sumeq2dv 13476 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
48 eqid 2462 . . 3  |-  ( Re
`  ( C  / 
( _i ^ k
) ) )  =  ( Re `  ( C  /  ( _i ^
k ) ) )
4948dfitg 21906 . 2  |-  S. A C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
5048dfitg 21906 . 2  |-  S. B C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
5147, 49, 503eqtr4g 2528 1  |-  ( ph  ->  S. A C  _d x  =  S. B C  _d x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2657    \ cdif 3468    C_ wss 3471   ifcif 3934   class class class wbr 4442    |-> cmpt 4500   ` cfv 5581  (class class class)co 6277   CCcc 9481   RRcr 9482   0cc0 9483   _ici 9485    x. cmul 9488    <_ cle 9620    / cdiv 10197   3c3 10577   ZZcz 10855   ...cfz 11663   ^cexp 12124   Recre 12882   sum_csu 13459   S.2citg2 21755   S.citg 21757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-nn 10528  df-2 10585  df-n0 10787  df-z 10856  df-uz 11074  df-fz 11664  df-seq 12066  df-exp 12125  df-cj 12884  df-re 12885  df-im 12886  df-sum 13460  df-itg 21762
This theorem is referenced by:  itgss2  21949  areacirc  29678
  Copyright terms: Public domain W3C validator