MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgss Structured version   Unicode version

Theorem itgss 21248
Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgss.1  |-  ( ph  ->  A  C_  B )
itgss.2  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  = 
0 )
Assertion
Ref Expression
itgss  |-  ( ph  ->  S. A C  _d x  =  S. B C  _d x )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem itgss
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfzelz 11449 . . . 4  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
2 iffalse 3796 . . . . . . . . . . . . . 14  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  0 )
32ad2antll 723 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
x  e.  B  /\  -.  x  e.  A
) )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  0 )
4 eldif 3335 . . . . . . . . . . . . . 14  |-  ( x  e.  ( B  \  A )  <->  ( x  e.  B  /\  -.  x  e.  A ) )
5 itgss.2 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  = 
0 )
65adantlr 709 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  C  =  0 )
76oveq1d 6105 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  ( C  /  ( _i ^
k ) )  =  ( 0  /  (
_i ^ k ) ) )
8 ax-icn 9337 . . . . . . . . . . . . . . . . . . . . . 22  |-  _i  e.  CC
9 ine0 9776 . . . . . . . . . . . . . . . . . . . . . 22  |-  _i  =/=  0
10 expclz 11886 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
118, 9, 10mp3an12 1299 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ZZ  ->  (
_i ^ k )  e.  CC )
12 expne0i 11892 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
138, 9, 12mp3an12 1299 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
1411, 13div0d 10102 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ZZ  ->  (
0  /  ( _i
^ k ) )  =  0 )
1514ad2antlr 721 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  (
0  /  ( _i
^ k ) )  =  0 )
167, 15eqtrd 2473 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  ( C  /  ( _i ^
k ) )  =  0 )
1716fveq2d 5692 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re ` 
0 ) )
18 re0 12637 . . . . . . . . . . . . . . . . 17  |-  ( Re
`  0 )  =  0
1917, 18syl6eq 2489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  0 )
2019ifeq1d 3804 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ,  0 ) )
21 ifid 3823 . . . . . . . . . . . . . . 15  |-  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ,  0 )  =  0
2220, 21syl6eq 2489 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  ( B  \  A
) )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  0 )
234, 22sylan2br 473 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
x  e.  B  /\  -.  x  e.  A
) )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  0 )
243, 23eqtr4d 2476 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  (
x  e.  B  /\  -.  x  e.  A
) )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
2524expr 612 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  B )  ->  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )
26 iftrue 3794 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
2725, 26pm2.61d2 160 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  B )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
28 iftrue 3794 . . . . . . . . . . 11  |-  ( x  e.  B  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
2928adantl 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  B )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
3027, 29eqtr4d 2476 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  x  e.  B )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
31 itgss.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  B )
3231adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ZZ )  ->  A  C_  B )
3332sseld 3352 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( x  e.  A  ->  x  e.  B ) )
3433con3and 439 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  -.  x  e.  B )  ->  -.  x  e.  A
)
3534, 2syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  -.  x  e.  B )  ->  if ( x  e.  A ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  0 )
36 iffalse 3796 . . . . . . . . . . 11  |-  ( -.  x  e.  B  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  0 )
3736adantl 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  -.  x  e.  B )  ->  if ( x  e.  B ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  0 )
3835, 37eqtr4d 2476 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  -.  x  e.  B )  ->  if ( x  e.  A ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
3930, 38pm2.61dan 784 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
40 ifan 3832 . . . . . . . 8  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
41 ifan 3832 . . . . . . . 8  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
4239, 40, 413eqtr4g 2498 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )
4342mpteq2dv 4376 . . . . . 6  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
4443fveq2d 5692 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
4544oveq2d 6106 . . . 4  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
461, 45sylan2 471 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
4746sumeq2dv 13176 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
48 eqid 2441 . . 3  |-  ( Re
`  ( C  / 
( _i ^ k
) ) )  =  ( Re `  ( C  /  ( _i ^
k ) ) )
4948dfitg 21206 . 2  |-  S. A C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
5048dfitg 21206 . 2  |-  S. B C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
5147, 49, 503eqtr4g 2498 1  |-  ( ph  ->  S. A C  _d x  =  S. B C  _d x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604    \ cdif 3322    C_ wss 3325   ifcif 3788   class class class wbr 4289    e. cmpt 4347   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   _ici 9280    x. cmul 9283    <_ cle 9415    / cdiv 9989   3c3 10368   ZZcz 10642   ...cfz 11433   ^cexp 11861   Recre 12582   sum_csu 13159   S.2citg2 21055   S.citg 21057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sum 13160  df-itg 21062
This theorem is referenced by:  itgss2  21249  areacirc  28414
  Copyright terms: Public domain W3C validator