MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsplitioo Structured version   Unicode version

Theorem itgsplitioo 21215
Description: The  S. integral splits on open intervals with matching endpoints. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgsplitioo.1  |-  ( ph  ->  A  e.  RR )
itgsplitioo.2  |-  ( ph  ->  C  e.  RR )
itgsplitioo.3  |-  ( ph  ->  B  e.  ( A [,] C ) )
itgsplitioo.4  |-  ( (
ph  /\  x  e.  ( A (,) C ) )  ->  D  e.  CC )
itgsplitioo.5  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  D )  e.  L^1 )
itgsplitioo.6  |-  ( ph  ->  ( x  e.  ( B (,) C ) 
|->  D )  e.  L^1 )
Assertion
Ref Expression
itgsplitioo  |-  ( ph  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B
) D  _d x  +  S. ( B (,) C ) D  _d x ) )
Distinct variable groups:    x, A    x, B    x, C    ph, x
Allowed substitution hint:    D( x)

Proof of Theorem itgsplitioo
StepHypRef Expression
1 itgsplitioo.3 . . . . . . 7  |-  ( ph  ->  B  e.  ( A [,] C ) )
2 itgsplitioo.1 . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3 itgsplitioo.2 . . . . . . . 8  |-  ( ph  ->  C  e.  RR )
4 elicc2 11356 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( B  e.  ( A [,] C )  <-> 
( B  e.  RR  /\  A  <_  B  /\  B  <_  C ) ) )
52, 3, 4syl2anc 656 . . . . . . 7  |-  ( ph  ->  ( B  e.  ( A [,] C )  <-> 
( B  e.  RR  /\  A  <_  B  /\  B  <_  C ) ) )
61, 5mpbid 210 . . . . . 6  |-  ( ph  ->  ( B  e.  RR  /\  A  <_  B  /\  B  <_  C ) )
76simp2d 996 . . . . 5  |-  ( ph  ->  A  <_  B )
86simp1d 995 . . . . . 6  |-  ( ph  ->  B  e.  RR )
92, 8leloed 9513 . . . . 5  |-  ( ph  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B )
) )
107, 9mpbid 210 . . . 4  |-  ( ph  ->  ( A  <  B  \/  A  =  B
) )
1110ord 377 . . 3  |-  ( ph  ->  ( -.  A  < 
B  ->  A  =  B ) )
122rexrd 9429 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR* )
13 iooss1 11331 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  A  <_  B )  ->  ( B (,) C )  C_  ( A (,) C ) )
1412, 7, 13syl2anc 656 . . . . . . . . 9  |-  ( ph  ->  ( B (,) C
)  C_  ( A (,) C ) )
1514sselda 3353 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( B (,) C ) )  ->  x  e.  ( A (,) C ) )
16 itgsplitioo.4 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) C ) )  ->  D  e.  CC )
1715, 16syldan 467 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( B (,) C ) )  ->  D  e.  CC )
18 itgsplitioo.6 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( B (,) C ) 
|->  D )  e.  L^1 )
1917, 18itgcl 21161 . . . . . 6  |-  ( ph  ->  S. ( B (,) C ) D  _d x  e.  CC )
2019addid2d 9566 . . . . 5  |-  ( ph  ->  ( 0  +  S. ( B (,) C ) D  _d x )  =  S. ( B (,) C ) D  _d x )
2120eqcomd 2446 . . . 4  |-  ( ph  ->  S. ( B (,) C ) D  _d x  =  ( 0  +  S. ( B (,) C ) D  _d x ) )
22 oveq1 6097 . . . . . 6  |-  ( A  =  B  ->  ( A (,) C )  =  ( B (,) C
) )
23 itgeq1 21150 . . . . . 6  |-  ( ( A (,) C )  =  ( B (,) C )  ->  S. ( A (,) C ) D  _d x  =  S. ( B (,) C ) D  _d x )
2422, 23syl 16 . . . . 5  |-  ( A  =  B  ->  S. ( A (,) C ) D  _d x  =  S. ( B (,) C ) D  _d x )
25 oveq1 6097 . . . . . . . . 9  |-  ( A  =  B  ->  ( A (,) B )  =  ( B (,) B
) )
26 iooid 11324 . . . . . . . . 9  |-  ( B (,) B )  =  (/)
2725, 26syl6eq 2489 . . . . . . . 8  |-  ( A  =  B  ->  ( A (,) B )  =  (/) )
28 itgeq1 21150 . . . . . . . 8  |-  ( ( A (,) B )  =  (/)  ->  S. ( A (,) B ) D  _d x  =  S. (/) D  _d x )
2927, 28syl 16 . . . . . . 7  |-  ( A  =  B  ->  S. ( A (,) B ) D  _d x  =  S. (/) D  _d x )
30 itg0 21157 . . . . . . 7  |-  S. (/) D  _d x  =  0
3129, 30syl6eq 2489 . . . . . 6  |-  ( A  =  B  ->  S. ( A (,) B ) D  _d x  =  0 )
3231oveq1d 6105 . . . . 5  |-  ( A  =  B  ->  ( S. ( A (,) B
) D  _d x  +  S. ( B (,) C ) D  _d x )  =  ( 0  +  S. ( B (,) C ) D  _d x ) )
3324, 32eqeq12d 2455 . . . 4  |-  ( A  =  B  ->  ( S. ( A (,) C
) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C
) D  _d x )  <->  S. ( B (,) C ) D  _d x  =  ( 0  +  S. ( B (,) C ) D  _d x ) ) )
3421, 33syl5ibrcom 222 . . 3  |-  ( ph  ->  ( A  =  B  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
3511, 34syld 44 . 2  |-  ( ph  ->  ( -.  A  < 
B  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
366simp3d 997 . . . . 5  |-  ( ph  ->  B  <_  C )
378, 3leloed 9513 . . . . 5  |-  ( ph  ->  ( B  <_  C  <->  ( B  <  C  \/  B  =  C )
) )
3836, 37mpbid 210 . . . 4  |-  ( ph  ->  ( B  <  C  \/  B  =  C
) )
3938ord 377 . . 3  |-  ( ph  ->  ( -.  B  < 
C  ->  B  =  C ) )
403rexrd 9429 . . . . . . . . . 10  |-  ( ph  ->  C  e.  RR* )
41 iooss2 11332 . . . . . . . . . 10  |-  ( ( C  e.  RR*  /\  B  <_  C )  ->  ( A (,) B )  C_  ( A (,) C ) )
4240, 36, 41syl2anc 656 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) C ) )
4342sselda 3353 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  ( A (,) C ) )
4443, 16syldan 467 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  D  e.  CC )
45 itgsplitioo.5 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  D )  e.  L^1 )
4644, 45itgcl 21161 . . . . . 6  |-  ( ph  ->  S. ( A (,) B ) D  _d x  e.  CC )
4746addid1d 9565 . . . . 5  |-  ( ph  ->  ( S. ( A (,) B ) D  _d x  +  0 )  =  S. ( A (,) B ) D  _d x )
4847eqcomd 2446 . . . 4  |-  ( ph  ->  S. ( A (,) B ) D  _d x  =  ( S. ( A (,) B
) D  _d x  +  0 ) )
49 oveq2 6098 . . . . . 6  |-  ( B  =  C  ->  ( A (,) B )  =  ( A (,) C
) )
50 itgeq1 21150 . . . . . 6  |-  ( ( A (,) B )  =  ( A (,) C )  ->  S. ( A (,) B ) D  _d x  =  S. ( A (,) C ) D  _d x )
5149, 50syl 16 . . . . 5  |-  ( B  =  C  ->  S. ( A (,) B ) D  _d x  =  S. ( A (,) C ) D  _d x )
52 oveq2 6098 . . . . . . . . 9  |-  ( B  =  C  ->  ( B (,) B )  =  ( B (,) C
) )
5326, 52syl5eqr 2487 . . . . . . . 8  |-  ( B  =  C  ->  (/)  =  ( B (,) C ) )
54 itgeq1 21150 . . . . . . . 8  |-  ( (/)  =  ( B (,) C )  ->  S. (/) D  _d x  =  S. ( B (,) C ) D  _d x )
5553, 54syl 16 . . . . . . 7  |-  ( B  =  C  ->  S. (/) D  _d x  =  S. ( B (,) C ) D  _d x )
5630, 55syl5eqr 2487 . . . . . 6  |-  ( B  =  C  ->  0  =  S. ( B (,) C ) D  _d x )
5756oveq2d 6106 . . . . 5  |-  ( B  =  C  ->  ( S. ( A (,) B
) D  _d x  +  0 )  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) )
5851, 57eqeq12d 2455 . . . 4  |-  ( B  =  C  ->  ( S. ( A (,) B
) D  _d x  =  ( S. ( A (,) B ) D  _d x  + 
0 )  <->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
5948, 58syl5ibcom 220 . . 3  |-  ( ph  ->  ( B  =  C  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
6039, 59syld 44 . 2  |-  ( ph  ->  ( -.  B  < 
C  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
61 indir 3595 . . . . . . . 8  |-  ( ( ( A (,) B
)  u.  { B } )  i^i  ( B (,) C ) )  =  ( ( ( A (,) B )  i^i  ( B (,) C ) )  u.  ( { B }  i^i  ( B (,) C
) ) )
628rexrd 9429 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  RR* )
6312, 62jca 529 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  e.  RR*  /\  B  e.  RR* )
)
6463adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( A  e.  RR*  /\  B  e.  RR* )
)
6562, 40jca 529 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  e.  RR*  /\  C  e.  RR* )
)
6665adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( B  e.  RR*  /\  C  e.  RR* )
)
678adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  B  e.  RR )
6867leidd 9902 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  B  <_  B )
69 ioodisj 11411 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( B  e.  RR*  /\  C  e. 
RR* ) )  /\  B  <_  B )  -> 
( ( A (,) B )  i^i  ( B (,) C ) )  =  (/) )
7064, 66, 68, 69syl21anc 1212 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( A (,) B )  i^i  ( B (,) C ) )  =  (/) )
71 incom 3540 . . . . . . . . . . 11  |-  ( { B }  i^i  ( B (,) C ) )  =  ( ( B (,) C )  i^i 
{ B } )
7267ltnrd 9504 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  -.  B  <  B )
73 eliooord 11351 . . . . . . . . . . . . . 14  |-  ( B  e.  ( B (,) C )  ->  ( B  <  B  /\  B  <  C ) )
7473simpld 456 . . . . . . . . . . . . 13  |-  ( B  e.  ( B (,) C )  ->  B  <  B )
7572, 74nsyl 121 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  -.  B  e.  ( B (,) C ) )
76 disjsn 3933 . . . . . . . . . . . 12  |-  ( ( ( B (,) C
)  i^i  { B } )  =  (/)  <->  -.  B  e.  ( B (,) C ) )
7775, 76sylibr 212 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( B (,) C )  i^i  { B } )  =  (/) )
7871, 77syl5eq 2485 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( { B }  i^i  ( B (,) C
) )  =  (/) )
7970, 78uneq12d 3508 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  i^i  ( B (,) C
) )  u.  ( { B }  i^i  ( B (,) C ) ) )  =  ( (/)  u.  (/) ) )
80 un0 3659 . . . . . . . . 9  |-  ( (/)  u.  (/) )  =  (/)
8179, 80syl6eq 2489 . . . . . . . 8  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  i^i  ( B (,) C
) )  u.  ( { B }  i^i  ( B (,) C ) ) )  =  (/) )
8261, 81syl5eq 2485 . . . . . . 7  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  u. 
{ B } )  i^i  ( B (,) C ) )  =  (/) )
8382fveq2d 5692 . . . . . 6  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( vol* `  ( ( ( A (,) B )  u. 
{ B } )  i^i  ( B (,) C ) ) )  =  ( vol* `  (/) ) )
84 ovol0 20876 . . . . . 6  |-  ( vol* `  (/) )  =  0
8583, 84syl6eq 2489 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( vol* `  ( ( ( A (,) B )  u. 
{ B } )  i^i  ( B (,) C ) ) )  =  0 )
8612, 62, 403jca 1163 . . . . . . 7  |-  ( ph  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* ) )
87 ioojoin 11412 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  -> 
( ( ( A (,) B )  u. 
{ B } )  u.  ( B (,) C ) )  =  ( A (,) C
) )
8886, 87sylan 468 . . . . . 6  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  u. 
{ B } )  u.  ( B (,) C ) )  =  ( A (,) C
) )
8988eqcomd 2446 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( A (,) C
)  =  ( ( ( A (,) B
)  u.  { B } )  u.  ( B (,) C ) ) )
9016adantlr 709 . . . . 5  |-  ( ( ( ph  /\  ( A  <  B  /\  B  <  C ) )  /\  x  e.  ( A (,) C ) )  ->  D  e.  CC )
9145adantr 462 . . . . . 6  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( x  e.  ( A (,) B ) 
|->  D )  e.  L^1 )
92 ssun1 3516 . . . . . . . . 9  |-  ( A (,) B )  C_  ( ( A (,) B )  u.  { B } )
9392a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( A (,) B
)  C_  ( ( A (,) B )  u. 
{ B } ) )
94 ioossre 11353 . . . . . . . . . 10  |-  ( A (,) B )  C_  RR
9594a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( A (,) B
)  C_  RR )
9667snssd 4015 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  { B }  C_  RR )
9795, 96unssd 3529 . . . . . . . 8  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( A (,) B )  u.  { B } )  C_  RR )
98 uncom 3497 . . . . . . . . . . . . 13  |-  ( ( A (,) B )  u.  { B }
)  =  ( { B }  u.  ( A (,) B ) )
9998difeq1i 3467 . . . . . . . . . . . 12  |-  ( ( ( A (,) B
)  u.  { B } )  \  ( A (,) B ) )  =  ( ( { B }  u.  ( A (,) B ) ) 
\  ( A (,) B ) )
100 difun2 3755 . . . . . . . . . . . 12  |-  ( ( { B }  u.  ( A (,) B ) )  \  ( A (,) B ) )  =  ( { B }  \  ( A (,) B ) )
10199, 100eqtri 2461 . . . . . . . . . . 11  |-  ( ( ( A (,) B
)  u.  { B } )  \  ( A (,) B ) )  =  ( { B }  \  ( A (,) B ) )
102 difss 3480 . . . . . . . . . . 11  |-  ( { B }  \  ( A (,) B ) ) 
C_  { B }
103101, 102eqsstri 3383 . . . . . . . . . 10  |-  ( ( ( A (,) B
)  u.  { B } )  \  ( A (,) B ) ) 
C_  { B }
104103a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( A (,) B )  u. 
{ B } ) 
\  ( A (,) B ) )  C_  { B } )
105 ovolsn 20878 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( vol* `  { B } )  =  0 )
10667, 105syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( vol* `  { B } )  =  0 )
107 ovolssnul 20870 . . . . . . . . 9  |-  ( ( ( ( ( A (,) B )  u. 
{ B } ) 
\  ( A (,) B ) )  C_  { B }  /\  { B }  C_  RR  /\  ( vol* `  { B } )  =  0 )  ->  ( vol* `  ( ( ( A (,) B )  u.  { B }
)  \  ( A (,) B ) ) )  =  0 )
108104, 96, 106, 107syl3anc 1213 . . . . . . . 8  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( vol* `  ( ( ( A (,) B )  u. 
{ B } ) 
\  ( A (,) B ) ) )  =  0 )
109 ssun1 3516 . . . . . . . . . . 11  |-  ( ( A (,) B )  u.  { B }
)  C_  ( (
( A (,) B
)  u.  { B } )  u.  ( B (,) C ) )
110109, 88syl5sseq 3401 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( A (,) B )  u.  { B } )  C_  ( A (,) C ) )
111110sselda 3353 . . . . . . . . 9  |-  ( ( ( ph  /\  ( A  <  B  /\  B  <  C ) )  /\  x  e.  ( ( A (,) B )  u. 
{ B } ) )  ->  x  e.  ( A (,) C ) )
112111, 90syldan 467 . . . . . . . 8  |-  ( ( ( ph  /\  ( A  <  B  /\  B  <  C ) )  /\  x  e.  ( ( A (,) B )  u. 
{ B } ) )  ->  D  e.  CC )
11393, 97, 108, 112itgss3 21192 . . . . . . 7  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( ( x  e.  ( A (,) B )  |->  D )  e.  L^1  <->  ( x  e.  ( ( A (,) B )  u.  { B } )  |->  D )  e.  L^1 )  /\  S. ( A (,) B ) D  _d x  =  S. ( ( A (,) B )  u.  { B } ) D  _d x ) )
114113simpld 456 . . . . . 6  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( ( x  e.  ( A (,) B
)  |->  D )  e.  L^1  <->  ( x  e.  ( ( A (,) B )  u.  { B } )  |->  D )  e.  L^1 ) )
11591, 114mpbid 210 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( x  e.  ( ( A (,) B
)  u.  { B } )  |->  D )  e.  L^1 )
11618adantr 462 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( x  e.  ( B (,) C ) 
|->  D )  e.  L^1 )
11785, 89, 90, 115, 116itgsplit 21213 . . . 4  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  S. ( A (,) C
) D  _d x  =  ( S. ( ( A (,) B
)  u.  { B } ) D  _d x  +  S. ( B (,) C ) D  _d x ) )
118113simprd 460 . . . . 5  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  S. ( A (,) B
) D  _d x  =  S. ( ( A (,) B )  u.  { B }
) D  _d x )
119118oveq1d 6105 . . . 4  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  -> 
( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x )  =  ( S. ( ( A (,) B
)  u.  { B } ) D  _d x  +  S. ( B (,) C ) D  _d x ) )
120117, 119eqtr4d 2476 . . 3  |-  ( (
ph  /\  ( A  <  B  /\  B  < 
C ) )  ->  S. ( A (,) C
) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C
) D  _d x ) )
121120ex 434 . 2  |-  ( ph  ->  ( ( A  < 
B  /\  B  <  C )  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) ) )
12235, 60, 121ecased 930 1  |-  ( ph  ->  S. ( A (,) C ) D  _d x  =  ( S. ( A (,) B
) D  _d x  +  S. ( B (,) C ) D  _d x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    \ cdif 3322    u. cun 3323    i^i cin 3324    C_ wss 3325   (/)c0 3634   {csn 3874   class class class wbr 4289    e. cmpt 4347   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278    + caddc 9281   RR*cxr 9413    < clt 9414    <_ cle 9415   (,)cioo 11296   [,]cicc 11299   vol*covol 20846   L^1cibl 20997   S.citg 20998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-ofr 6320  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-sum 13160  df-rest 14357  df-topgen 14378  df-psmet 17709  df-xmet 17710  df-met 17711  df-bl 17712  df-mopn 17713  df-top 18403  df-bases 18405  df-topon 18406  df-cmp 18890  df-ovol 20848  df-vol 20849  df-mbf 20999  df-itg1 21000  df-itg2 21001  df-ibl 21002  df-itg 21003  df-0p 21048
This theorem is referenced by:  ditgsplitlem  21235  ftc1lem1  21407  ftc1anc  28384
  Copyright terms: Public domain W3C validator