MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsplit Structured version   Unicode version

Theorem itgsplit 21288
Description: The  S. integral splits under an almost disjoint union. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itgsplit.i  |-  ( ph  ->  ( vol* `  ( A  i^i  B ) )  =  0 )
itgsplit.u  |-  ( ph  ->  U  =  ( A  u.  B ) )
itgsplit.c  |-  ( (
ph  /\  x  e.  U )  ->  C  e.  V )
itgsplit.a  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
itgsplit.b  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  L^1 )
Assertion
Ref Expression
itgsplit  |-  ( ph  ->  S. U C  _d x  =  ( S. A C  _d x  +  S. B C  _d x ) )
Distinct variable groups:    x, A    x, B    ph, x    x, U    x, V
Allowed substitution hint:    C( x)

Proof of Theorem itgsplit
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 itgsplit.a . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
2 iblmbf 21220 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  C )  e.  L^1 
->  ( x  e.  A  |->  C )  e. MblFn )
31, 2syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
4 ssun1 3514 . . . . . . . . . . . 12  |-  A  C_  ( A  u.  B
)
5 itgsplit.u . . . . . . . . . . . 12  |-  ( ph  ->  U  =  ( A  u.  B ) )
64, 5syl5sseqr 3400 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  U )
76sselda 3351 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  U )
8 itgsplit.c . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  U )  ->  C  e.  V )
97, 8syldan 470 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
103, 9mbfdm2 21091 . . . . . . . 8  |-  ( ph  ->  A  e.  dom  vol )
1110adantr 465 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  A  e.  dom  vol )
12 itgsplit.b . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  L^1 )
13 iblmbf 21220 . . . . . . . . . 10  |-  ( ( x  e.  B  |->  C )  e.  L^1 
->  ( x  e.  B  |->  C )  e. MblFn )
1412, 13syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  B  |->  C )  e. MblFn )
15 ssun2 3515 . . . . . . . . . . . 12  |-  B  C_  ( A  u.  B
)
1615, 5syl5sseqr 3400 . . . . . . . . . . 11  |-  ( ph  ->  B  C_  U )
1716sselda 3351 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  U )
1817, 8syldan 470 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  V )
1914, 18mbfdm2 21091 . . . . . . . 8  |-  ( ph  ->  B  e.  dom  vol )
2019adantr 465 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  B  e.  dom  vol )
21 itgsplit.i . . . . . . . 8  |-  ( ph  ->  ( vol* `  ( A  i^i  B ) )  =  0 )
2221adantr 465 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( vol* `  ( A  i^i  B ) )  =  0 )
235adantr 465 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  U  =  ( A  u.  B ) )
245eleq2d 2505 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  U  <->  x  e.  ( A  u.  B ) ) )
25 elun 3492 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
2624, 25syl6bb 261 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  U  <->  ( x  e.  A  \/  x  e.  B )
) )
2726biimpa 484 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  U )  ->  (
x  e.  A  \/  x  e.  B )
)
283, 9mbfmptcl 21090 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
2914, 18mbfmptcl 21090 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  CC )
3028, 29jaodan 783 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  A  \/  x  e.  B ) )  ->  C  e.  CC )
3127, 30syldan 470 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  U )  ->  C  e.  CC )
3231adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  C  e.  CC )
33 ax-icn 9333 . . . . . . . . . . . . . 14  |-  _i  e.  CC
34 elfznn0 11473 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  NN0 )
3534adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  k  e.  NN0 )
36 expcl 11875 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  k  e.  NN0 )  -> 
( _i ^ k
)  e.  CC )
3733, 35, 36sylancr 663 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
_i ^ k )  e.  CC )
3837adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  (
_i ^ k )  e.  CC )
39 elfzelz 11445 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
4039adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  k  e.  ZZ )
41 ine0 9772 . . . . . . . . . . . . . . 15  |-  _i  =/=  0
42 expne0i 11888 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
4333, 41, 42mp3an12 1304 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
4440, 43syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
_i ^ k )  =/=  0 )
4544adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  (
_i ^ k )  =/=  0 )
4632, 38, 45divcld 10099 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  ( C  /  ( _i ^
k ) )  e.  CC )
4746recld 12675 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  e.  RR )
48 0re 9378 . . . . . . . . . 10  |-  0  e.  RR
49 ifcl 3826 . . . . . . . . . 10  |-  ( ( ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
5047, 48, 49sylancl 662 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
5150rexrd 9425 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR* )
52 max1 11149 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
5348, 47, 52sylancr 663 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  0  <_  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )
54 elxrge0 11386 . . . . . . . 8  |-  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,] +oo )  <->  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )
5551, 53, 54sylanbrc 664 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,] +oo ) )
56 ifan 3830 . . . . . . . 8  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
5756mpteq2i 4370 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
58 ifan 3830 . . . . . . . 8  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
5958mpteq2i 4370 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
60 ifan 3830 . . . . . . . 8  |-  if ( ( x  e.  U  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  U ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
6160mpteq2i 4370 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  U ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
62 eqidd 2439 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
63 eqidd 2439 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
6462, 63, 1, 9iblitg 21221 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
6539, 64sylan2 474 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
66 eqidd 2439 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
67 eqidd 2439 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
6866, 67, 12, 18iblitg 21221 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
6939, 68sylan2 474 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
7011, 20, 22, 23, 55, 57, 59, 61, 65, 69itg2split 21202 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
7170oveq2d 6102 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( _i ^ k )  x.  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
7264recnd 9404 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  CC )
7339, 72sylan2 474 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  CC )
7469recnd 9404 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  CC )
7537, 73, 74adddid 9402 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )  =  ( ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
7671, 75eqtrd 2470 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  +  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
7776sumeq2dv 13172 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  =  sum_ k  e.  ( 0 ... 3 ) ( ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
78 fzfid 11787 . . . 4  |-  ( ph  ->  ( 0 ... 3
)  e.  Fin )
7937, 73mulcld 9398 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  e.  CC )
8037, 74mulcld 9398 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  e.  CC )
8178, 79, 80fsumadd 13207 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( ( _i
^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  +  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )  =  (
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
8277, 81eqtrd 2470 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  =  (
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
83 eqid 2438 . . 3  |-  ( Re
`  ( C  / 
( _i ^ k
) ) )  =  ( Re `  ( C  /  ( _i ^
k ) ) )
8483dfitg 21222 . 2  |-  S. U C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
8583dfitg 21222 . . 3  |-  S. A C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
8683dfitg 21222 . . 3  |-  S. B C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
8785, 86oveq12i 6098 . 2  |-  ( S. A C  _d x  +  S. B C  _d x )  =  ( sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
8882, 84, 873eqtr4g 2495 1  |-  ( ph  ->  S. U C  _d x  =  ( S. A C  _d x  +  S. B C  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601    u. cun 3321    i^i cin 3322   ifcif 3786   class class class wbr 4287    e. cmpt 4345   dom cdm 4835   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   _ici 9276    + caddc 9277    x. cmul 9279   +oocpnf 9407   RR*cxr 9409    <_ cle 9411    / cdiv 9985   3c3 10364   NN0cn0 10571   ZZcz 10638   [,]cicc 11295   ...cfz 11429   ^cexp 11857   Recre 12578   sum_csu 13155   vol*covol 20921   volcvol 20922  MblFncmbf 21069   S.2citg2 21071   L^1cibl 21072   S.citg 21073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-disj 4258  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-ofr 6316  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-sum 13156  df-rest 14353  df-topgen 14374  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-top 18478  df-bases 18480  df-topon 18481  df-cmp 18965  df-ovol 20923  df-vol 20924  df-mbf 21074  df-itg1 21075  df-itg2 21076  df-ibl 21077  df-itg 21078
This theorem is referenced by:  itgspliticc  21289  itgsplitioo  21290
  Copyright terms: Public domain W3C validator