Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexplem1 Structured version   Unicode version

Theorem itgsinexplem1 37647
Description: Integration by parts is applied to integrate sin^(N+1). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
itgsinexplem1.1  |-  F  =  ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )
itgsinexplem1.2  |-  G  =  ( x  e.  CC  |->  -u ( cos `  x
) )
itgsinexplem1.3  |-  H  =  ( x  e.  CC  |->  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )
itgsinexplem1.4  |-  I  =  ( x  e.  CC  |->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )
itgsinexplem1.5  |-  L  =  ( x  e.  CC  |->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )
itgsinexplem1.6  |-  M  =  ( x  e.  CC  |->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )
itgsinexplem1.7  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
itgsinexplem1  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  _d x  =  ( N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x ) )
Distinct variable groups:    x, N    ph, x
Allowed substitution hints:    F( x)    G( x)    H( x)    I( x)    L( x)    M( x)

Proof of Theorem itgsinexplem1
StepHypRef Expression
1 0m0e0 10719 . . . . 5  |-  ( 0  -  0 )  =  0
21oveq1i 6311 . . . 4  |-  ( ( 0  -  0 )  -  S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x )  =  ( 0  -  S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x )
3 0re 9643 . . . . . 6  |-  0  e.  RR
43a1i 11 . . . . 5  |-  ( ph  ->  0  e.  RR )
5 pire 23397 . . . . . 6  |-  pi  e.  RR
65a1i 11 . . . . 5  |-  ( ph  ->  pi  e.  RR )
7 pipos 23399 . . . . . . 7  |-  0  <  pi
83, 5, 7ltleii 9757 . . . . . 6  |-  0  <_  pi
98a1i 11 . . . . 5  |-  ( ph  ->  0  <_  pi )
103, 5pm3.2i 456 . . . . . . . . . . . . 13  |-  ( 0  e.  RR  /\  pi  e.  RR )
11 iccssre 11716 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( 0 [,] pi )  C_  RR )
1210, 11ax-mp 5 . . . . . . . . . . . 12  |-  ( 0 [,] pi )  C_  RR
13 ax-resscn 9596 . . . . . . . . . . . 12  |-  RR  C_  CC
1412, 13sstri 3473 . . . . . . . . . . 11  |-  ( 0 [,] pi )  C_  CC
1514sseli 3460 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,] pi )  ->  x  e.  CC )
1615adantl 467 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  x  e.  CC )
1715sincld 14169 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] pi )  ->  ( sin `  x )  e.  CC )
1817adantl 467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( sin `  x )  e.  CC )
19 itgsinexplem1.7 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN )
2019nnnn0d 10925 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
2120adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  N  e.  NN0 )
2218, 21expcld 12415 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ N )  e.  CC )
23 itgsinexplem1.1 . . . . . . . . . 10  |-  F  =  ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )
2423fvmpt2 5969 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( ( sin `  x
) ^ N )  e.  CC )  -> 
( F `  x
)  =  ( ( sin `  x ) ^ N ) )
2516, 22, 24syl2anc 665 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( F `  x )  =  ( ( sin `  x ) ^ N
) )
2625eqcomd 2430 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ N )  =  ( F `  x ) )
2726mpteq2dva 4507 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  =  ( x  e.  ( 0 [,] pi )  |->  ( F `
 x ) ) )
28 nfmpt1 4510 . . . . . . . 8  |-  F/_ x
( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )
2923, 28nfcxfr 2582 . . . . . . 7  |-  F/_ x F
30 nfcv 2584 . . . . . . . . 9  |-  F/_ x sin
31 sincn 23383 . . . . . . . . . 10  |-  sin  e.  ( CC -cn-> CC )
3231a1i 11 . . . . . . . . 9  |-  ( ph  ->  sin  e.  ( CC
-cn-> CC ) )
3330, 32, 20expcnfg 37488 . . . . . . . 8  |-  ( ph  ->  ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )  e.  ( CC
-cn-> CC ) )
3423, 33syl5eqel 2514 . . . . . . 7  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
3514a1i 11 . . . . . . 7  |-  ( ph  ->  ( 0 [,] pi )  C_  CC )
3629, 34, 35cncfmptss 37482 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( F `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
3727, 36eqeltrd 2510 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )
3815coscld 14170 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] pi )  ->  ( cos `  x )  e.  CC )
3938negcld 9973 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,] pi )  ->  -u ( cos `  x )  e.  CC )
40 itgsinexplem1.2 . . . . . . . . . . 11  |-  G  =  ( x  e.  CC  |->  -u ( cos `  x
) )
4140fvmpt2 5969 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  -u ( cos `  x
)  e.  CC )  ->  ( G `  x )  =  -u ( cos `  x ) )
4215, 39, 41syl2anc 665 . . . . . . . . 9  |-  ( x  e.  ( 0 [,] pi )  ->  ( G `  x )  =  -u ( cos `  x
) )
4342eqcomd 2430 . . . . . . . 8  |-  ( x  e.  ( 0 [,] pi )  ->  -u ( cos `  x )  =  ( G `  x
) )
4443adantl 467 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  -u ( cos `  x )  =  ( G `  x
) )
4544mpteq2dva 4507 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  -u ( cos `  x
) )  =  ( x  e.  ( 0 [,] pi )  |->  ( G `  x ) ) )
46 nfmpt1 4510 . . . . . . . 8  |-  F/_ x
( x  e.  CC  |->  -u ( cos `  x
) )
4740, 46nfcxfr 2582 . . . . . . 7  |-  F/_ x G
48 coscn 23384 . . . . . . . . 9  |-  cos  e.  ( CC -cn-> CC )
4948a1i 11 . . . . . . . 8  |-  ( ph  ->  cos  e.  ( CC
-cn-> CC ) )
5040negfcncf 21935 . . . . . . . 8  |-  ( cos 
e.  ( CC -cn-> CC )  ->  G  e.  ( CC -cn-> CC ) )
5149, 50syl 17 . . . . . . 7  |-  ( ph  ->  G  e.  ( CC
-cn-> CC ) )
5247, 51, 35cncfmptss 37482 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( G `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
5345, 52eqeltrd 2510 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  -u ( cos `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
54 itgsinexplem1.3 . . . . . 6  |-  H  =  ( x  e.  CC  |->  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )
55 ssid 3483 . . . . . . . . . . 11  |-  CC  C_  CC
5655a1i 11 . . . . . . . . . 10  |-  ( ph  ->  CC  C_  CC )
5719nncnd 10625 . . . . . . . . . 10  |-  ( ph  ->  N  e.  CC )
5856, 57, 56constcncfg 37565 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  CC  |->  N )  e.  ( CC -cn-> CC ) )
59 nnm1nn0 10911 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
6019, 59syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
6130, 32, 60expcnfg 37488 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  1 ) ) )  e.  ( CC
-cn-> CC ) )
6258, 61mulcncf 22382 . . . . . . . 8  |-  ( ph  ->  ( x  e.  CC  |->  ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) ) )  e.  ( CC -cn-> CC ) )
63 cosf 14164 . . . . . . . . . . 11  |-  cos : CC
--> CC
6463a1i 11 . . . . . . . . . 10  |-  ( ph  ->  cos : CC --> CC )
6564feqmptd 5930 . . . . . . . . 9  |-  ( ph  ->  cos  =  ( x  e.  CC  |->  ( cos `  x ) ) )
6665, 48syl6eqelr 2519 . . . . . . . 8  |-  ( ph  ->  ( x  e.  CC  |->  ( cos `  x ) )  e.  ( CC
-cn-> CC ) )
6762, 66mulcncf 22382 . . . . . . 7  |-  ( ph  ->  ( x  e.  CC  |->  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )  e.  ( CC -cn-> CC ) )
6854, 67syl5eqel 2514 . . . . . 6  |-  ( ph  ->  H  e.  ( CC
-cn-> CC ) )
69 ioosscn 37419 . . . . . . 7  |-  ( 0 (,) pi )  C_  CC
7069a1i 11 . . . . . 6  |-  ( ph  ->  ( 0 (,) pi )  C_  CC )
7157adantr 466 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  N  e.  CC )
7269sseli 3460 . . . . . . . . . . 11  |-  ( x  e.  ( 0 (,) pi )  ->  x  e.  CC )
7372sincld 14169 . . . . . . . . . 10  |-  ( x  e.  ( 0 (,) pi )  ->  ( sin `  x )  e.  CC )
7473adantl 467 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( sin `  x )  e.  CC )
7560adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( N  -  1 )  e.  NN0 )
7674, 75expcld 12415 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( N  -  1 ) )  e.  CC )
7771, 76mulcld 9663 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( N  x.  ( ( sin `  x ) ^
( N  -  1 ) ) )  e.  CC )
7872coscld 14170 . . . . . . . 8  |-  ( x  e.  ( 0 (,) pi )  ->  ( cos `  x )  e.  CC )
7978adantl 467 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( cos `  x )  e.  CC )
8077, 79mulcld 9663 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  e.  CC )
8154, 68, 70, 56, 80cncfmptssg 37564 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )  e.  ( ( 0 (,) pi ) -cn-> CC ) )
8230, 32, 70cncfmptss 37482 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( sin `  x
) )  e.  ( ( 0 (,) pi ) -cn-> CC ) )
83 ioossicc 11720 . . . . . . 7  |-  ( 0 (,) pi )  C_  ( 0 [,] pi )
8483a1i 11 . . . . . 6  |-  ( ph  ->  ( 0 (,) pi )  C_  ( 0 [,] pi ) )
85 ioombl 22502 . . . . . . 7  |-  ( 0 (,) pi )  e. 
dom  vol
8685a1i 11 . . . . . 6  |-  ( ph  ->  ( 0 (,) pi )  e.  dom  vol )
8722, 18mulcld 9663 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  e.  CC )
88 itgsinexplem1.4 . . . . . . . . . . . 12  |-  I  =  ( x  e.  CC  |->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )
8988fvmpt2 5969 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) )  e.  CC )  ->  (
I `  x )  =  ( ( ( sin `  x ) ^ N )  x.  ( sin `  x
) ) )
9016, 87, 89syl2anc 665 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
I `  x )  =  ( ( ( sin `  x ) ^ N )  x.  ( sin `  x
) ) )
9190eqcomd 2430 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  =  ( I `  x ) )
9291mpteq2dva 4507 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )  =  ( x  e.  ( 0 [,] pi )  |->  ( I `  x ) ) )
93 nfmpt1 4510 . . . . . . . . . 10  |-  F/_ x
( x  e.  CC  |->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )
9488, 93nfcxfr 2582 . . . . . . . . 9  |-  F/_ x I
95 sinf 14163 . . . . . . . . . . . . . 14  |-  sin : CC
--> CC
9695a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  sin : CC --> CC )
9796feqmptd 5930 . . . . . . . . . . . 12  |-  ( ph  ->  sin  =  ( x  e.  CC  |->  ( sin `  x ) ) )
9897, 31syl6eqelr 2519 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  CC  |->  ( sin `  x ) )  e.  ( CC
-cn-> CC ) )
9933, 98mulcncf 22382 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  CC  |->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )  e.  ( CC -cn-> CC ) )
10088, 99syl5eqel 2514 . . . . . . . . 9  |-  ( ph  ->  I  e.  ( CC
-cn-> CC ) )
10194, 100, 35cncfmptss 37482 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( I `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
10292, 101eqeltrd 2510 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
103 cniccibl 22782 . . . . . . 7  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  (
x  e.  ( 0 [,] pi )  |->  ( ( ( sin `  x
) ^ N )  x.  ( sin `  x
) ) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )  ->  ( x  e.  ( 0 [,] pi )  |->  ( ( ( sin `  x ) ^ N )  x.  ( sin `  x
) ) )  e.  L^1 )
1044, 6, 102, 103syl3anc 1264 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )  e.  L^1 )
10584, 86, 87, 104iblss 22746 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )  e.  L^1 )
10657adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  N  e.  CC )
10760adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( N  -  1 )  e.  NN0 )
10818, 107expcld 12415 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ ( N  -  1 ) )  e.  CC )
109106, 108mulcld 9663 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( N  x.  ( ( sin `  x ) ^
( N  -  1 ) ) )  e.  CC )
11038adantl 467 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( cos `  x )  e.  CC )
111109, 110mulcld 9663 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  e.  CC )
11239adantl 467 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  -u ( cos `  x )  e.  CC )
113111, 112mulcld 9663 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  e.  CC )
114 itgsinexplem1.5 . . . . . . . 8  |-  L  =  ( x  e.  CC  |->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )
115 eqid 2422 . . . . . . . . . . . 12  |-  ( x  e.  CC  |->  -u ( cos `  x ) )  =  ( x  e.  CC  |->  -u ( cos `  x
) )
116115negfcncf 21935 . . . . . . . . . . 11  |-  ( cos 
e.  ( CC -cn-> CC )  ->  ( x  e.  CC  |->  -u ( cos `  x
) )  e.  ( CC -cn-> CC ) )
11749, 116syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  CC  |->  -u ( cos `  x
) )  e.  ( CC -cn-> CC ) )
11867, 117mulcncf 22382 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  CC  |->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )  e.  ( CC -cn-> CC ) )
119114, 118syl5eqel 2514 . . . . . . . 8  |-  ( ph  ->  L  e.  ( CC
-cn-> CC ) )
120114, 119, 35, 56, 113cncfmptssg 37564 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
121 cniccibl 22782 . . . . . . 7  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  (
x  e.  ( 0 [,] pi )  |->  ( ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )  ->  ( x  e.  ( 0 [,] pi )  |->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  x.  ( cos `  x
) )  x.  -u ( cos `  x ) ) )  e.  L^1 )
1224, 6, 120, 121syl3anc 1264 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )  e.  L^1 )
12384, 86, 113, 122iblss 22746 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )  e.  L^1 )
124 reelprrecn 9631 . . . . . . 7  |-  RR  e.  { RR ,  CC }
125124a1i 11 . . . . . 6  |-  ( ph  ->  RR  e.  { RR ,  CC } )
126 recn 9629 . . . . . . . . 9  |-  ( x  e.  RR  ->  x  e.  CC )
127126sincld 14169 . . . . . . . 8  |-  ( x  e.  RR  ->  ( sin `  x )  e.  CC )
128127adantl 467 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( sin `  x )  e.  CC )
12920adantr 466 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  N  e. 
NN0 )
130128, 129expcld 12415 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( sin `  x ) ^ N )  e.  CC )
13157adantr 466 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  N  e.  CC )
13260adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( N  -  1 )  e. 
NN0 )
133128, 132expcld 12415 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( sin `  x ) ^ ( N  - 
1 ) )  e.  CC )
134131, 133mulcld 9663 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  e.  CC )
135126coscld 14170 . . . . . . . 8  |-  ( x  e.  RR  ->  ( cos `  x )  e.  CC )
136135adantl 467 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( cos `  x )  e.  CC )
137134, 136mulcld 9663 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( N  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  x.  ( cos `  x
) )  e.  CC )
138 sincl 14165 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  ( sin `  x )  e.  CC )
139138adantl 467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  ( sin `  x )  e.  CC )
14020adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  N  e. 
NN0 )
141139, 140expcld 12415 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( sin `  x ) ^ N )  e.  CC )
142141, 23fmptd 6057 . . . . . . . 8  |-  ( ph  ->  F : CC --> CC )
143126adantl 467 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  CC )
144 elex 3090 . . . . . . . . . . . . . . 15  |-  ( ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  e.  CC  ->  ( ( N  x.  ( ( sin `  x ) ^
( N  -  1 ) ) )  x.  ( cos `  x
) )  e.  _V )
145137, 144syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( N  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  x.  ( cos `  x
) )  e.  _V )
146 rabid 3005 . . . . . . . . . . . . . 14  |-  ( x  e.  { x  e.  CC  |  ( ( N  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  x.  ( cos `  x
) )  e.  _V } 
<->  ( x  e.  CC  /\  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  e. 
_V ) )
147143, 145, 146sylanbrc 668 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  x  e. 
{ x  e.  CC  |  ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  e.  _V } )
14854dmmpt 5345 . . . . . . . . . . . . 13  |-  dom  H  =  { x  e.  CC  |  ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  e.  _V }
149147, 148syl6eleqr 2521 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  x  e. 
dom  H )
150149ex 435 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  RR  ->  x  e.  dom  H
) )
151150alrimiv 1763 . . . . . . . . . 10  |-  ( ph  ->  A. x ( x  e.  RR  ->  x  e.  dom  H ) )
152 nfcv 2584 . . . . . . . . . . 11  |-  F/_ x RR
153 nfmpt1 4510 . . . . . . . . . . . . 13  |-  F/_ x
( x  e.  CC  |->  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )
15454, 153nfcxfr 2582 . . . . . . . . . . . 12  |-  F/_ x H
155154nfdm 5091 . . . . . . . . . . 11  |-  F/_ x dom  H
156152, 155dfss2f 3455 . . . . . . . . . 10  |-  ( RR  C_  dom  H  <->  A. x
( x  e.  RR  ->  x  e.  dom  H
) )
157151, 156sylibr 215 . . . . . . . . 9  |-  ( ph  ->  RR  C_  dom  H )
15819dvsinexp 37597 . . . . . . . . . . 11  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  ( ( sin `  x
) ^ N ) ) )  =  ( x  e.  CC  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) ) )
15923oveq2i 6312 . . . . . . . . . . 11  |-  ( CC 
_D  F )  =  ( CC  _D  (
x  e.  CC  |->  ( ( sin `  x
) ^ N ) ) )
160158, 159, 543eqtr4g 2488 . . . . . . . . . 10  |-  ( ph  ->  ( CC  _D  F
)  =  H )
161160dmeqd 5052 . . . . . . . . 9  |-  ( ph  ->  dom  ( CC  _D  F )  =  dom  H )
162157, 161sseqtr4d 3501 . . . . . . . 8  |-  ( ph  ->  RR  C_  dom  ( CC 
_D  F ) )
163 dvres3 22852 . . . . . . . 8  |-  ( ( ( RR  e.  { RR ,  CC }  /\  F : CC --> CC )  /\  ( CC  C_  CC  /\  RR  C_  dom  ( CC  _D  F
) ) )  -> 
( RR  _D  ( F  |`  RR ) )  =  ( ( CC 
_D  F )  |`  RR ) )
164125, 142, 56, 162, 163syl22anc 1265 . . . . . . 7  |-  ( ph  ->  ( RR  _D  ( F  |`  RR ) )  =  ( ( CC 
_D  F )  |`  RR ) )
16523reseq1i 5116 . . . . . . . . . 10  |-  ( F  |`  RR )  =  ( ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )  |`  RR )
166 resmpt 5169 . . . . . . . . . . 11  |-  ( RR  C_  CC  ->  ( (
x  e.  CC  |->  ( ( sin `  x
) ^ N ) )  |`  RR )  =  ( x  e.  RR  |->  ( ( sin `  x ) ^ N
) ) )
16713, 166ax-mp 5 . . . . . . . . . 10  |-  ( ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )  |`  RR )  =  ( x  e.  RR  |->  ( ( sin `  x ) ^ N
) )
168165, 167eqtri 2451 . . . . . . . . 9  |-  ( F  |`  RR )  =  ( x  e.  RR  |->  ( ( sin `  x
) ^ N ) )
169168oveq2i 6312 . . . . . . . 8  |-  ( RR 
_D  ( F  |`  RR ) )  =  ( RR  _D  ( x  e.  RR  |->  ( ( sin `  x ) ^ N ) ) )
170169a1i 11 . . . . . . 7  |-  ( ph  ->  ( RR  _D  ( F  |`  RR ) )  =  ( RR  _D  ( x  e.  RR  |->  ( ( sin `  x
) ^ N ) ) ) )
171160reseq1d 5119 . . . . . . . 8  |-  ( ph  ->  ( ( CC  _D  F )  |`  RR )  =  ( H  |`  RR ) )
17254reseq1i 5116 . . . . . . . . 9  |-  ( H  |`  RR )  =  ( ( x  e.  CC  |->  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )  |`  RR )
173 resmpt 5169 . . . . . . . . . 10  |-  ( RR  C_  CC  ->  ( (
x  e.  CC  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )  |`  RR )  =  ( x  e.  RR  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) ) )
17413, 173ax-mp 5 . . . . . . . . 9  |-  ( ( x  e.  CC  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )  |`  RR )  =  ( x  e.  RR  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )
175172, 174eqtri 2451 . . . . . . . 8  |-  ( H  |`  RR )  =  ( x  e.  RR  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )
176171, 175syl6eq 2479 . . . . . . 7  |-  ( ph  ->  ( ( CC  _D  F )  |`  RR )  =  ( x  e.  RR  |->  ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) ) )
177164, 170, 1763eqtr3d 2471 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
x  e.  RR  |->  ( ( sin `  x
) ^ N ) ) )  =  ( x  e.  RR  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) ) )
17812a1i 11 . . . . . 6  |-  ( ph  ->  ( 0 [,] pi )  C_  RR )
179 eqid 2422 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
180179tgioo2 21805 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
18110a1i 11 . . . . . . 7  |-  ( ph  ->  ( 0  e.  RR  /\  pi  e.  RR ) )
182 iccntr 21823 . . . . . . 7  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( ( int `  ( topGen `
 ran  (,) )
) `  ( 0 [,] pi ) )  =  ( 0 (,) pi ) )
183181, 182syl 17 . . . . . 6  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( 0 [,] pi ) )  =  ( 0 (,) pi ) )
184125, 130, 137, 177, 178, 180, 179, 183dvmptres2 22900 . . . . 5  |-  ( ph  ->  ( RR  _D  (
x  e.  ( 0 [,] pi )  |->  ( ( sin `  x
) ^ N ) ) )  =  ( x  e.  ( 0 (,) pi )  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) ) )
185135negcld 9973 . . . . . . 7  |-  ( x  e.  RR  ->  -u ( cos `  x )  e.  CC )
186185adantl 467 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  -u ( cos `  x )  e.  CC )
187127negcld 9973 . . . . . . . . 9  |-  ( x  e.  RR  ->  -u ( sin `  x )  e.  CC )
188187adantl 467 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  -u ( sin `  x )  e.  CC )
189 dvcosre 37598 . . . . . . . . 9  |-  ( RR 
_D  ( x  e.  RR  |->  ( cos `  x
) ) )  =  ( x  e.  RR  |->  -u ( sin `  x
) )
190189a1i 11 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  RR  |->  ( cos `  x ) ) )  =  ( x  e.  RR  |->  -u ( sin `  x ) ) )
191125, 136, 188, 190dvmptneg 22904 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  RR  |->  -u ( cos `  x ) ) )  =  ( x  e.  RR  |->  -u -u ( sin `  x
) ) )
192127negnegd 9977 . . . . . . . . 9  |-  ( x  e.  RR  ->  -u -u ( sin `  x )  =  ( sin `  x
) )
193192adantl 467 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  -u -u ( sin `  x )  =  ( sin `  x
) )
194193mpteq2dva 4507 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  -u -u ( sin `  x
) )  =  ( x  e.  RR  |->  ( sin `  x ) ) )
195191, 194eqtrd 2463 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
x  e.  RR  |->  -u ( cos `  x ) ) )  =  ( x  e.  RR  |->  ( sin `  x ) ) )
196125, 186, 128, 195, 178, 180, 179, 183dvmptres2 22900 . . . . 5  |-  ( ph  ->  ( RR  _D  (
x  e.  ( 0 [,] pi )  |->  -u ( cos `  x ) ) )  =  ( x  e.  ( 0 (,) pi )  |->  ( sin `  x ) ) )
197 fveq2 5877 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( sin `  x )  =  ( sin `  0
) )
198 sin0 14188 . . . . . . . . . . 11  |-  ( sin `  0 )  =  0
199197, 198syl6eq 2479 . . . . . . . . . 10  |-  ( x  =  0  ->  ( sin `  x )  =  0 )
200199oveq1d 6316 . . . . . . . . 9  |-  ( x  =  0  ->  (
( sin `  x
) ^ N )  =  ( 0 ^ N ) )
201200adantl 467 . . . . . . . 8  |-  ( (
ph  /\  x  = 
0 )  ->  (
( sin `  x
) ^ N )  =  ( 0 ^ N ) )
20219adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  x  = 
0 )  ->  N  e.  NN )
2032020expd 12431 . . . . . . . 8  |-  ( (
ph  /\  x  = 
0 )  ->  (
0 ^ N )  =  0 )
204201, 203eqtrd 2463 . . . . . . 7  |-  ( (
ph  /\  x  = 
0 )  ->  (
( sin `  x
) ^ N )  =  0 )
205204oveq1d 6316 . . . . . 6  |-  ( (
ph  /\  x  = 
0 )  ->  (
( ( sin `  x
) ^ N )  x.  -u ( cos `  x
) )  =  ( 0  x.  -u ( cos `  x ) ) )
206 id 23 . . . . . . . . . 10  |-  ( x  =  0  ->  x  =  0 )
207 0cn 9635 . . . . . . . . . 10  |-  0  e.  CC
208206, 207syl6eqel 2518 . . . . . . . . 9  |-  ( x  =  0  ->  x  e.  CC )
209 coscl 14166 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( cos `  x )  e.  CC )
210209negcld 9973 . . . . . . . . 9  |-  ( x  e.  CC  ->  -u ( cos `  x )  e.  CC )
211208, 210syl 17 . . . . . . . 8  |-  ( x  =  0  ->  -u ( cos `  x )  e.  CC )
212211adantl 467 . . . . . . 7  |-  ( (
ph  /\  x  = 
0 )  ->  -u ( cos `  x )  e.  CC )
213212mul02d 9831 . . . . . 6  |-  ( (
ph  /\  x  = 
0 )  ->  (
0  x.  -u ( cos `  x ) )  =  0 )
214205, 213eqtrd 2463 . . . . 5  |-  ( (
ph  /\  x  = 
0 )  ->  (
( ( sin `  x
) ^ N )  x.  -u ( cos `  x
) )  =  0 )
215 fveq2 5877 . . . . . . . . . . 11  |-  ( x  =  pi  ->  ( sin `  x )  =  ( sin `  pi ) )
216 sinpi 23396 . . . . . . . . . . 11  |-  ( sin `  pi )  =  0
217215, 216syl6eq 2479 . . . . . . . . . 10  |-  ( x  =  pi  ->  ( sin `  x )  =  0 )
218217oveq1d 6316 . . . . . . . . 9  |-  ( x  =  pi  ->  (
( sin `  x
) ^ N )  =  ( 0 ^ N ) )
219218adantl 467 . . . . . . . 8  |-  ( (
ph  /\  x  =  pi )  ->  ( ( sin `  x ) ^ N )  =  ( 0 ^ N
) )
22019adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  x  =  pi )  ->  N  e.  NN )
2212200expd 12431 . . . . . . . 8  |-  ( (
ph  /\  x  =  pi )  ->  ( 0 ^ N )  =  0 )
222219, 221eqtrd 2463 . . . . . . 7  |-  ( (
ph  /\  x  =  pi )  ->  ( ( sin `  x ) ^ N )  =  0 )
223222oveq1d 6316 . . . . . 6  |-  ( (
ph  /\  x  =  pi )  ->  ( ( ( sin `  x
) ^ N )  x.  -u ( cos `  x
) )  =  ( 0  x.  -u ( cos `  x ) ) )
224 id 23 . . . . . . . . . . 11  |-  ( x  =  pi  ->  x  =  pi )
225 picn 23398 . . . . . . . . . . 11  |-  pi  e.  CC
226224, 225syl6eqel 2518 . . . . . . . . . 10  |-  ( x  =  pi  ->  x  e.  CC )
227226coscld 14170 . . . . . . . . 9  |-  ( x  =  pi  ->  ( cos `  x )  e.  CC )
228227negcld 9973 . . . . . . . 8  |-  ( x  =  pi  ->  -u ( cos `  x )  e.  CC )
229228adantl 467 . . . . . . 7  |-  ( (
ph  /\  x  =  pi )  ->  -u ( cos `  x )  e.  CC )
230229mul02d 9831 . . . . . 6  |-  ( (
ph  /\  x  =  pi )  ->  ( 0  x.  -u ( cos `  x
) )  =  0 )
231223, 230eqtrd 2463 . . . . 5  |-  ( (
ph  /\  x  =  pi )  ->  ( ( ( sin `  x
) ^ N )  x.  -u ( cos `  x
) )  =  0 )
2324, 6, 9, 37, 53, 81, 82, 105, 123, 184, 196, 214, 231itgparts 22983 . . . 4  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  _d x  =  ( ( 0  -  0 )  -  S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  x.  ( cos `  x
) )  x.  -u ( cos `  x ) )  _d x ) )
233 df-neg 9863 . . . . 5  |-  -u S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  x.  ( cos `  x
) )  x.  -u ( cos `  x ) )  _d x  =  ( 0  -  S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x )
234233a1i 11 . . . 4  |-  ( ph  -> 
-u S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x  =  ( 0  -  S. ( 0 (,) pi ) ( ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x ) )
2352, 232, 2343eqtr4a 2489 . . 3  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  _d x  =  -u S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x )
23677, 79, 79mulassd 9666 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  ( cos `  x
) )  =  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( ( cos `  x )  x.  ( cos `  x
) ) ) )
237 sqval 12333 . . . . . . . . . . . . . 14  |-  ( ( cos `  x )  e.  CC  ->  (
( cos `  x
) ^ 2 )  =  ( ( cos `  x )  x.  ( cos `  x ) ) )
238237eqcomd 2430 . . . . . . . . . . . . 13  |-  ( ( cos `  x )  e.  CC  ->  (
( cos `  x
)  x.  ( cos `  x ) )  =  ( ( cos `  x
) ^ 2 ) )
23978, 238syl 17 . . . . . . . . . . . 12  |-  ( x  e.  ( 0 (,) pi )  ->  (
( cos `  x
)  x.  ( cos `  x ) )  =  ( ( cos `  x
) ^ 2 ) )
240239adantl 467 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( cos `  x
)  x.  ( cos `  x ) )  =  ( ( cos `  x
) ^ 2 ) )
241240oveq2d 6317 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( ( cos `  x )  x.  ( cos `  x
) ) )  =  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( ( cos `  x ) ^ 2 ) ) )
24278sqcld 12413 . . . . . . . . . . . 12  |-  ( x  e.  ( 0 (,) pi )  ->  (
( cos `  x
) ^ 2 )  e.  CC )
243242adantl 467 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( cos `  x
) ^ 2 )  e.  CC )
24471, 76, 243mulassd 9666 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( ( cos `  x ) ^ 2 ) )  =  ( N  x.  ( ( ( sin `  x ) ^ ( N  -  1 ) )  x.  ( ( cos `  x ) ^ 2 ) ) ) )
245241, 244eqtrd 2463 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( ( cos `  x )  x.  ( cos `  x
) ) )  =  ( N  x.  (
( ( sin `  x
) ^ ( N  -  1 ) )  x.  ( ( cos `  x ) ^ 2 ) ) ) )
24676, 243mulcomd 9664 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( sin `  x
) ^ ( N  -  1 ) )  x.  ( ( cos `  x ) ^ 2 ) )  =  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) )
247246oveq2d 6317 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( N  x.  ( (
( sin `  x
) ^ ( N  -  1 ) )  x.  ( ( cos `  x ) ^ 2 ) ) )  =  ( N  x.  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) ) )
248236, 245, 2473eqtrd 2467 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  ( cos `  x
) )  =  ( N  x.  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) ) )
249248negeqd 9869 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  -u (
( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  ( cos `  x
) )  =  -u ( N  x.  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) ) )
25080, 79mulneg2d 10072 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  =  -u ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  ( cos `  x
) ) )
251243, 76mulcld 9663 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  e.  CC )
25271, 251mulneg1d 10071 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( -u N  x.  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) )  = 
-u ( N  x.  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) ) )
253249, 250, 2523eqtr4d 2473 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  =  (
-u N  x.  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) ) )
254253itgeq2dv 22723 . . . . 5  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x  =  S. ( 0 (,) pi ) (
-u N  x.  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) )  _d x )
25557negcld 9973 . . . . . 6  |-  ( ph  -> 
-u N  e.  CC )
25638sqcld 12413 . . . . . . . . 9  |-  ( x  e.  ( 0 [,] pi )  ->  (
( cos `  x
) ^ 2 )  e.  CC )
257256adantl 467 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( cos `  x
) ^ 2 )  e.  CC )
258257, 108mulcld 9663 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  e.  CC )
259 itgsinexplem1.6 . . . . . . . . . . . . 13  |-  M  =  ( x  e.  CC  |->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )
260259fvmpt2 5969 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  e.  CC )  -> 
( M `  x
)  =  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) )
26116, 258, 260syl2anc 665 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( M `  x )  =  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) ) )
262261eqcomd 2430 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  =  ( M `  x ) )
263262mpteq2dva 4507 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )  =  ( x  e.  ( 0 [,] pi )  |->  ( M `
 x ) ) )
264 nfmpt1 4510 . . . . . . . . . . 11  |-  F/_ x
( x  e.  CC  |->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )
265259, 264nfcxfr 2582 . . . . . . . . . 10  |-  F/_ x M
266 nfcv 2584 . . . . . . . . . . . . 13  |-  F/_ x cos
267 2nn0 10886 . . . . . . . . . . . . . 14  |-  2  e.  NN0
268267a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  NN0 )
269266, 49, 268expcnfg 37488 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  CC  |->  ( ( cos `  x
) ^ 2 ) )  e.  ( CC
-cn-> CC ) )
270269, 61mulcncf 22382 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  CC  |->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )  e.  ( CC
-cn-> CC ) )
271259, 270syl5eqel 2514 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( CC
-cn-> CC ) )
272265, 271, 35cncfmptss 37482 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( M `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
273263, 272eqeltrd 2510 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )
274 cniccibl 22782 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  (
x  e.  ( 0 [,] pi )  |->  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )  ->  ( x  e.  ( 0 [,] pi )  |->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) ) )  e.  L^1 )
2754, 6, 273, 274syl3anc 1264 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )  e.  L^1 )
27684, 86, 258, 275iblss 22746 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )  e.  L^1 )
277255, 251, 276itgmulc2 22775 . . . . 5  |-  ( ph  ->  ( -u N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x )  =  S. ( 0 (,) pi ) (
-u N  x.  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) )  _d x )
278254, 277eqtr4d 2466 . . . 4  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x  =  ( -u N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  _d x ) )
279278negeqd 9869 . . 3  |-  ( ph  -> 
-u S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x  =  -u ( -u N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  _d x ) )
280235, 279eqtrd 2463 . 2  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  _d x  =  -u ( -u N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  _d x ) )
281251, 276itgcl 22725 . . . 4  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  _d x  e.  CC )
28257, 281mulneg1d 10071 . . 3  |-  ( ph  ->  ( -u N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x )  =  -u ( N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x ) )
283282negeqd 9869 . 2  |-  ( ph  -> 
-u ( -u N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  _d x )  =  -u -u ( N  x.  S. (
0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  _d x ) )
28457, 281mulcld 9663 . . 3  |-  ( ph  ->  ( N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x )  e.  CC )
285284negnegd 9977 . 2  |-  ( ph  -> 
-u -u ( N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x )  =  ( N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x ) )
286280, 283, 2853eqtrd 2467 1  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  _d x  =  ( N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370   A.wal 1435    = wceq 1437    e. wcel 1868   {crab 2779   _Vcvv 3081    C_ wss 3436   {cpr 3998   class class class wbr 4420    |-> cmpt 4479   dom cdm 4849   ran crn 4850    |` cres 4851   -->wf 5593   ` cfv 5597  (class class class)co 6301   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540    x. cmul 9544    <_ cle 9676    - cmin 9860   -ucneg 9861   NNcn 10609   2c2 10659   NN0cn0 10869   (,)cioo 11635   [,]cicc 11638   ^cexp 12271   sincsin 14101   cosccos 14102   picpi 14104   TopOpenctopn 15305   topGenctg 15321  ℂfldccnfld 18955   intcnt 20016   -cn->ccncf 21892   volcvol 22399   L^1cibl 22559   S.citg 22560    _D cdv 22802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-inf2 8148  ax-cc 8865  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-disj 4392  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-of 6541  df-ofr 6542  df-om 6703  df-1st 6803  df-2nd 6804  df-supp 6922  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-2o 7187  df-oadd 7190  df-omul 7191  df-er 7367  df-map 7478  df-pm 7479  df-ixp 7527  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-fsupp 7886  df-fi 7927  df-sup 7958  df-inf 7959  df-oi 8027  df-card 8374  df-acn 8377  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12027  df-mod 12096  df-seq 12213  df-exp 12272  df-fac 12459  df-bc 12487  df-hash 12515  df-shft 13116  df-cj 13148  df-re 13149  df-im 13150  df-sqrt 13284  df-abs 13285  df-limsup 13511  df-clim 13537  df-rlim 13538  df-sum 13738  df-ef 14106  df-sin 14108  df-cos 14109  df-pi 14111  df-struct 15108  df-ndx 15109  df-slot 15110  df-base 15111  df-sets 15112  df-ress 15113  df-plusg 15188  df-mulr 15189  df-starv 15190  df-sca 15191  df-vsca 15192  df-ip 15193  df-tset 15194  df-ple 15195  df-ds 15197  df-unif 15198  df-hom 15199  df-cco 15200  df-rest 15306  df-topn 15307  df-0g 15325  df-gsum 15326  df-topgen 15327  df-pt 15328  df-prds 15331  df-xrs 15385  df-qtop 15391  df-imas 15392  df-xps 15395  df-mre 15477  df-mrc 15478  df-acs 15480  df-mgm 16473  df-sgrp 16512  df-mnd 16522  df-submnd 16568  df-mulg 16661  df-cntz 16956  df-cmn 17417  df-psmet 18947  df-xmet 18948  df-met 18949  df-bl 18950  df-mopn 18951  df-fbas 18952  df-fg 18953  df-cnfld 18956  df-top 19905  df-bases 19906  df-topon 19907  df-topsp 19908  df-cld 20018  df-ntr 20019  df-cls 20020  df-nei 20098  df-lp 20136  df-perf 20137  df-cn 20227  df-cnp 20228  df-haus 20315  df-cmp 20386  df-tx 20561  df-hmeo 20754  df-fil 20845  df-fm 20937  df-flim 20938  df-flf 20939  df-xms 21319  df-ms 21320  df-tms 21321  df-cncf 21894  df-ovol 22400  df-vol 22402  df-mbf 22561  df-itg1 22562  df-itg2 22563  df-ibl 22564  df-itg 22565  df-0p 22612  df-limc 22805  df-dv 22806
This theorem is referenced by:  itgsinexp  37648
  Copyright terms: Public domain W3C validator