Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexplem1 Structured version   Visualization version   Unicode version

Theorem itgsinexplem1 37830
Description: Integration by parts is applied to integrate sin^(N+1). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
itgsinexplem1.1  |-  F  =  ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )
itgsinexplem1.2  |-  G  =  ( x  e.  CC  |->  -u ( cos `  x
) )
itgsinexplem1.3  |-  H  =  ( x  e.  CC  |->  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )
itgsinexplem1.4  |-  I  =  ( x  e.  CC  |->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )
itgsinexplem1.5  |-  L  =  ( x  e.  CC  |->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )
itgsinexplem1.6  |-  M  =  ( x  e.  CC  |->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )
itgsinexplem1.7  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
itgsinexplem1  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  _d x  =  ( N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x ) )
Distinct variable groups:    x, N    ph, x
Allowed substitution hints:    F( x)    G( x)    H( x)    I( x)    L( x)    M( x)

Proof of Theorem itgsinexplem1
StepHypRef Expression
1 0m0e0 10719 . . . . 5  |-  ( 0  -  0 )  =  0
21oveq1i 6300 . . . 4  |-  ( ( 0  -  0 )  -  S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x )  =  ( 0  -  S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x )
3 0re 9643 . . . . . 6  |-  0  e.  RR
43a1i 11 . . . . 5  |-  ( ph  ->  0  e.  RR )
5 pire 23413 . . . . . 6  |-  pi  e.  RR
65a1i 11 . . . . 5  |-  ( ph  ->  pi  e.  RR )
7 pipos 23415 . . . . . . 7  |-  0  <  pi
83, 5, 7ltleii 9757 . . . . . 6  |-  0  <_  pi
98a1i 11 . . . . 5  |-  ( ph  ->  0  <_  pi )
103, 5pm3.2i 457 . . . . . . . . . . . . 13  |-  ( 0  e.  RR  /\  pi  e.  RR )
11 iccssre 11716 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( 0 [,] pi )  C_  RR )
1210, 11ax-mp 5 . . . . . . . . . . . 12  |-  ( 0 [,] pi )  C_  RR
13 ax-resscn 9596 . . . . . . . . . . . 12  |-  RR  C_  CC
1412, 13sstri 3441 . . . . . . . . . . 11  |-  ( 0 [,] pi )  C_  CC
1514sseli 3428 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,] pi )  ->  x  e.  CC )
1615adantl 468 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  x  e.  CC )
1715sincld 14184 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] pi )  ->  ( sin `  x )  e.  CC )
1817adantl 468 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( sin `  x )  e.  CC )
19 itgsinexplem1.7 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN )
2019nnnn0d 10925 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
2120adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  N  e.  NN0 )
2218, 21expcld 12416 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ N )  e.  CC )
23 itgsinexplem1.1 . . . . . . . . . 10  |-  F  =  ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )
2423fvmpt2 5957 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( ( sin `  x
) ^ N )  e.  CC )  -> 
( F `  x
)  =  ( ( sin `  x ) ^ N ) )
2516, 22, 24syl2anc 667 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( F `  x )  =  ( ( sin `  x ) ^ N
) )
2625eqcomd 2457 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ N )  =  ( F `  x ) )
2726mpteq2dva 4489 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  =  ( x  e.  ( 0 [,] pi )  |->  ( F `
 x ) ) )
28 nfmpt1 4492 . . . . . . . 8  |-  F/_ x
( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )
2923, 28nfcxfr 2590 . . . . . . 7  |-  F/_ x F
30 nfcv 2592 . . . . . . . . 9  |-  F/_ x sin
31 sincn 23399 . . . . . . . . . 10  |-  sin  e.  ( CC -cn-> CC )
3231a1i 11 . . . . . . . . 9  |-  ( ph  ->  sin  e.  ( CC
-cn-> CC ) )
3330, 32, 20expcnfg 37671 . . . . . . . 8  |-  ( ph  ->  ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )  e.  ( CC
-cn-> CC ) )
3423, 33syl5eqel 2533 . . . . . . 7  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
3514a1i 11 . . . . . . 7  |-  ( ph  ->  ( 0 [,] pi )  C_  CC )
3629, 34, 35cncfmptss 37665 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( F `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
3727, 36eqeltrd 2529 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )
3815coscld 14185 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] pi )  ->  ( cos `  x )  e.  CC )
3938negcld 9973 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,] pi )  ->  -u ( cos `  x )  e.  CC )
40 itgsinexplem1.2 . . . . . . . . . . 11  |-  G  =  ( x  e.  CC  |->  -u ( cos `  x
) )
4140fvmpt2 5957 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  -u ( cos `  x
)  e.  CC )  ->  ( G `  x )  =  -u ( cos `  x ) )
4215, 39, 41syl2anc 667 . . . . . . . . 9  |-  ( x  e.  ( 0 [,] pi )  ->  ( G `  x )  =  -u ( cos `  x
) )
4342eqcomd 2457 . . . . . . . 8  |-  ( x  e.  ( 0 [,] pi )  ->  -u ( cos `  x )  =  ( G `  x
) )
4443adantl 468 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  -u ( cos `  x )  =  ( G `  x
) )
4544mpteq2dva 4489 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  -u ( cos `  x
) )  =  ( x  e.  ( 0 [,] pi )  |->  ( G `  x ) ) )
46 nfmpt1 4492 . . . . . . . 8  |-  F/_ x
( x  e.  CC  |->  -u ( cos `  x
) )
4740, 46nfcxfr 2590 . . . . . . 7  |-  F/_ x G
48 coscn 23400 . . . . . . . . 9  |-  cos  e.  ( CC -cn-> CC )
4948a1i 11 . . . . . . . 8  |-  ( ph  ->  cos  e.  ( CC
-cn-> CC ) )
5040negfcncf 21951 . . . . . . . 8  |-  ( cos 
e.  ( CC -cn-> CC )  ->  G  e.  ( CC -cn-> CC ) )
5149, 50syl 17 . . . . . . 7  |-  ( ph  ->  G  e.  ( CC
-cn-> CC ) )
5247, 51, 35cncfmptss 37665 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( G `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
5345, 52eqeltrd 2529 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  -u ( cos `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
54 itgsinexplem1.3 . . . . . 6  |-  H  =  ( x  e.  CC  |->  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )
55 ssid 3451 . . . . . . . . . . 11  |-  CC  C_  CC
5655a1i 11 . . . . . . . . . 10  |-  ( ph  ->  CC  C_  CC )
5719nncnd 10625 . . . . . . . . . 10  |-  ( ph  ->  N  e.  CC )
5856, 57, 56constcncfg 37748 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  CC  |->  N )  e.  ( CC -cn-> CC ) )
59 nnm1nn0 10911 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
6019, 59syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
6130, 32, 60expcnfg 37671 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  1 ) ) )  e.  ( CC
-cn-> CC ) )
6258, 61mulcncf 22398 . . . . . . . 8  |-  ( ph  ->  ( x  e.  CC  |->  ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) ) )  e.  ( CC -cn-> CC ) )
63 cosf 14179 . . . . . . . . . . 11  |-  cos : CC
--> CC
6463a1i 11 . . . . . . . . . 10  |-  ( ph  ->  cos : CC --> CC )
6564feqmptd 5918 . . . . . . . . 9  |-  ( ph  ->  cos  =  ( x  e.  CC  |->  ( cos `  x ) ) )
6665, 48syl6eqelr 2538 . . . . . . . 8  |-  ( ph  ->  ( x  e.  CC  |->  ( cos `  x ) )  e.  ( CC
-cn-> CC ) )
6762, 66mulcncf 22398 . . . . . . 7  |-  ( ph  ->  ( x  e.  CC  |->  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )  e.  ( CC -cn-> CC ) )
6854, 67syl5eqel 2533 . . . . . 6  |-  ( ph  ->  H  e.  ( CC
-cn-> CC ) )
69 ioosscn 37591 . . . . . . 7  |-  ( 0 (,) pi )  C_  CC
7069a1i 11 . . . . . 6  |-  ( ph  ->  ( 0 (,) pi )  C_  CC )
7157adantr 467 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  N  e.  CC )
7269sseli 3428 . . . . . . . . . . 11  |-  ( x  e.  ( 0 (,) pi )  ->  x  e.  CC )
7372sincld 14184 . . . . . . . . . 10  |-  ( x  e.  ( 0 (,) pi )  ->  ( sin `  x )  e.  CC )
7473adantl 468 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( sin `  x )  e.  CC )
7560adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( N  -  1 )  e.  NN0 )
7674, 75expcld 12416 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( N  -  1 ) )  e.  CC )
7771, 76mulcld 9663 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( N  x.  ( ( sin `  x ) ^
( N  -  1 ) ) )  e.  CC )
7872coscld 14185 . . . . . . . 8  |-  ( x  e.  ( 0 (,) pi )  ->  ( cos `  x )  e.  CC )
7978adantl 468 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( cos `  x )  e.  CC )
8077, 79mulcld 9663 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  e.  CC )
8154, 68, 70, 56, 80cncfmptssg 37747 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )  e.  ( ( 0 (,) pi ) -cn-> CC ) )
8230, 32, 70cncfmptss 37665 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( sin `  x
) )  e.  ( ( 0 (,) pi ) -cn-> CC ) )
83 ioossicc 11720 . . . . . . 7  |-  ( 0 (,) pi )  C_  ( 0 [,] pi )
8483a1i 11 . . . . . 6  |-  ( ph  ->  ( 0 (,) pi )  C_  ( 0 [,] pi ) )
85 ioombl 22518 . . . . . . 7  |-  ( 0 (,) pi )  e. 
dom  vol
8685a1i 11 . . . . . 6  |-  ( ph  ->  ( 0 (,) pi )  e.  dom  vol )
8722, 18mulcld 9663 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  e.  CC )
88 itgsinexplem1.4 . . . . . . . . . . . 12  |-  I  =  ( x  e.  CC  |->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )
8988fvmpt2 5957 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) )  e.  CC )  ->  (
I `  x )  =  ( ( ( sin `  x ) ^ N )  x.  ( sin `  x
) ) )
9016, 87, 89syl2anc 667 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
I `  x )  =  ( ( ( sin `  x ) ^ N )  x.  ( sin `  x
) ) )
9190eqcomd 2457 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  =  ( I `  x ) )
9291mpteq2dva 4489 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )  =  ( x  e.  ( 0 [,] pi )  |->  ( I `  x ) ) )
93 nfmpt1 4492 . . . . . . . . . 10  |-  F/_ x
( x  e.  CC  |->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )
9488, 93nfcxfr 2590 . . . . . . . . 9  |-  F/_ x I
95 sinf 14178 . . . . . . . . . . . . . 14  |-  sin : CC
--> CC
9695a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  sin : CC --> CC )
9796feqmptd 5918 . . . . . . . . . . . 12  |-  ( ph  ->  sin  =  ( x  e.  CC  |->  ( sin `  x ) ) )
9897, 31syl6eqelr 2538 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  CC  |->  ( sin `  x ) )  e.  ( CC
-cn-> CC ) )
9933, 98mulcncf 22398 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  CC  |->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )  e.  ( CC -cn-> CC ) )
10088, 99syl5eqel 2533 . . . . . . . . 9  |-  ( ph  ->  I  e.  ( CC
-cn-> CC ) )
10194, 100, 35cncfmptss 37665 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( I `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
10292, 101eqeltrd 2529 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
103 cniccibl 22798 . . . . . . 7  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  (
x  e.  ( 0 [,] pi )  |->  ( ( ( sin `  x
) ^ N )  x.  ( sin `  x
) ) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )  ->  ( x  e.  ( 0 [,] pi )  |->  ( ( ( sin `  x ) ^ N )  x.  ( sin `  x
) ) )  e.  L^1 )
1044, 6, 102, 103syl3anc 1268 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )  e.  L^1 )
10584, 86, 87, 104iblss 22762 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( ( sin `  x ) ^ N
)  x.  ( sin `  x ) ) )  e.  L^1 )
10657adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  N  e.  CC )
10760adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( N  -  1 )  e.  NN0 )
10818, 107expcld 12416 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ ( N  -  1 ) )  e.  CC )
109106, 108mulcld 9663 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( N  x.  ( ( sin `  x ) ^
( N  -  1 ) ) )  e.  CC )
11038adantl 468 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( cos `  x )  e.  CC )
111109, 110mulcld 9663 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  e.  CC )
11239adantl 468 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  -u ( cos `  x )  e.  CC )
113111, 112mulcld 9663 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  e.  CC )
114 itgsinexplem1.5 . . . . . . . 8  |-  L  =  ( x  e.  CC  |->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )
115 eqid 2451 . . . . . . . . . . . 12  |-  ( x  e.  CC  |->  -u ( cos `  x ) )  =  ( x  e.  CC  |->  -u ( cos `  x
) )
116115negfcncf 21951 . . . . . . . . . . 11  |-  ( cos 
e.  ( CC -cn-> CC )  ->  ( x  e.  CC  |->  -u ( cos `  x
) )  e.  ( CC -cn-> CC ) )
11749, 116syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  CC  |->  -u ( cos `  x
) )  e.  ( CC -cn-> CC ) )
11867, 117mulcncf 22398 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  CC  |->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )  e.  ( CC -cn-> CC ) )
119114, 118syl5eqel 2533 . . . . . . . 8  |-  ( ph  ->  L  e.  ( CC
-cn-> CC ) )
120114, 119, 35, 56, 113cncfmptssg 37747 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
121 cniccibl 22798 . . . . . . 7  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  (
x  e.  ( 0 [,] pi )  |->  ( ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )  ->  ( x  e.  ( 0 [,] pi )  |->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  x.  ( cos `  x
) )  x.  -u ( cos `  x ) ) )  e.  L^1 )
1224, 6, 120, 121syl3anc 1268 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )  e.  L^1 )
12384, 86, 113, 122iblss 22762 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )  e.  L^1 )
124 reelprrecn 9631 . . . . . . 7  |-  RR  e.  { RR ,  CC }
125124a1i 11 . . . . . 6  |-  ( ph  ->  RR  e.  { RR ,  CC } )
126 recn 9629 . . . . . . . . 9  |-  ( x  e.  RR  ->  x  e.  CC )
127126sincld 14184 . . . . . . . 8  |-  ( x  e.  RR  ->  ( sin `  x )  e.  CC )
128127adantl 468 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( sin `  x )  e.  CC )
12920adantr 467 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  N  e. 
NN0 )
130128, 129expcld 12416 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( sin `  x ) ^ N )  e.  CC )
13157adantr 467 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  N  e.  CC )
13260adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( N  -  1 )  e. 
NN0 )
133128, 132expcld 12416 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( sin `  x ) ^ ( N  - 
1 ) )  e.  CC )
134131, 133mulcld 9663 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  e.  CC )
135126coscld 14185 . . . . . . . 8  |-  ( x  e.  RR  ->  ( cos `  x )  e.  CC )
136135adantl 468 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( cos `  x )  e.  CC )
137134, 136mulcld 9663 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( N  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  x.  ( cos `  x
) )  e.  CC )
138 sincl 14180 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  ( sin `  x )  e.  CC )
139138adantl 468 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  ( sin `  x )  e.  CC )
14020adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  N  e. 
NN0 )
141139, 140expcld 12416 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( sin `  x ) ^ N )  e.  CC )
142141, 23fmptd 6046 . . . . . . . 8  |-  ( ph  ->  F : CC --> CC )
143126adantl 468 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  CC )
144 elex 3054 . . . . . . . . . . . . . . 15  |-  ( ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  e.  CC  ->  ( ( N  x.  ( ( sin `  x ) ^
( N  -  1 ) ) )  x.  ( cos `  x
) )  e.  _V )
145137, 144syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( N  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  x.  ( cos `  x
) )  e.  _V )
146 rabid 2967 . . . . . . . . . . . . . 14  |-  ( x  e.  { x  e.  CC  |  ( ( N  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  x.  ( cos `  x
) )  e.  _V } 
<->  ( x  e.  CC  /\  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  e. 
_V ) )
147143, 145, 146sylanbrc 670 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  x  e. 
{ x  e.  CC  |  ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  e.  _V } )
14854dmmpt 5330 . . . . . . . . . . . . 13  |-  dom  H  =  { x  e.  CC  |  ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  e.  _V }
149147, 148syl6eleqr 2540 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  x  e. 
dom  H )
150149ex 436 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  RR  ->  x  e.  dom  H
) )
151150alrimiv 1773 . . . . . . . . . 10  |-  ( ph  ->  A. x ( x  e.  RR  ->  x  e.  dom  H ) )
152 nfcv 2592 . . . . . . . . . . 11  |-  F/_ x RR
153 nfmpt1 4492 . . . . . . . . . . . . 13  |-  F/_ x
( x  e.  CC  |->  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )
15454, 153nfcxfr 2590 . . . . . . . . . . . 12  |-  F/_ x H
155154nfdm 5076 . . . . . . . . . . 11  |-  F/_ x dom  H
156152, 155dfss2f 3423 . . . . . . . . . 10  |-  ( RR  C_  dom  H  <->  A. x
( x  e.  RR  ->  x  e.  dom  H
) )
157151, 156sylibr 216 . . . . . . . . 9  |-  ( ph  ->  RR  C_  dom  H )
15819dvsinexp 37780 . . . . . . . . . . 11  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  ( ( sin `  x
) ^ N ) ) )  =  ( x  e.  CC  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) ) )
15923oveq2i 6301 . . . . . . . . . . 11  |-  ( CC 
_D  F )  =  ( CC  _D  (
x  e.  CC  |->  ( ( sin `  x
) ^ N ) ) )
160158, 159, 543eqtr4g 2510 . . . . . . . . . 10  |-  ( ph  ->  ( CC  _D  F
)  =  H )
161160dmeqd 5037 . . . . . . . . 9  |-  ( ph  ->  dom  ( CC  _D  F )  =  dom  H )
162157, 161sseqtr4d 3469 . . . . . . . 8  |-  ( ph  ->  RR  C_  dom  ( CC 
_D  F ) )
163 dvres3 22868 . . . . . . . 8  |-  ( ( ( RR  e.  { RR ,  CC }  /\  F : CC --> CC )  /\  ( CC  C_  CC  /\  RR  C_  dom  ( CC  _D  F
) ) )  -> 
( RR  _D  ( F  |`  RR ) )  =  ( ( CC 
_D  F )  |`  RR ) )
164125, 142, 56, 162, 163syl22anc 1269 . . . . . . 7  |-  ( ph  ->  ( RR  _D  ( F  |`  RR ) )  =  ( ( CC 
_D  F )  |`  RR ) )
16523reseq1i 5101 . . . . . . . . . 10  |-  ( F  |`  RR )  =  ( ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )  |`  RR )
166 resmpt 5154 . . . . . . . . . . 11  |-  ( RR  C_  CC  ->  ( (
x  e.  CC  |->  ( ( sin `  x
) ^ N ) )  |`  RR )  =  ( x  e.  RR  |->  ( ( sin `  x ) ^ N
) ) )
16713, 166ax-mp 5 . . . . . . . . . 10  |-  ( ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )  |`  RR )  =  ( x  e.  RR  |->  ( ( sin `  x ) ^ N
) )
168165, 167eqtri 2473 . . . . . . . . 9  |-  ( F  |`  RR )  =  ( x  e.  RR  |->  ( ( sin `  x
) ^ N ) )
169168oveq2i 6301 . . . . . . . 8  |-  ( RR 
_D  ( F  |`  RR ) )  =  ( RR  _D  ( x  e.  RR  |->  ( ( sin `  x ) ^ N ) ) )
170169a1i 11 . . . . . . 7  |-  ( ph  ->  ( RR  _D  ( F  |`  RR ) )  =  ( RR  _D  ( x  e.  RR  |->  ( ( sin `  x
) ^ N ) ) ) )
171160reseq1d 5104 . . . . . . . 8  |-  ( ph  ->  ( ( CC  _D  F )  |`  RR )  =  ( H  |`  RR ) )
17254reseq1i 5101 . . . . . . . . 9  |-  ( H  |`  RR )  =  ( ( x  e.  CC  |->  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )  |`  RR )
173 resmpt 5154 . . . . . . . . . 10  |-  ( RR  C_  CC  ->  ( (
x  e.  CC  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )  |`  RR )  =  ( x  e.  RR  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) ) )
17413, 173ax-mp 5 . . . . . . . . 9  |-  ( ( x  e.  CC  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )  |`  RR )  =  ( x  e.  RR  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )
175172, 174eqtri 2473 . . . . . . . 8  |-  ( H  |`  RR )  =  ( x  e.  RR  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )
176171, 175syl6eq 2501 . . . . . . 7  |-  ( ph  ->  ( ( CC  _D  F )  |`  RR )  =  ( x  e.  RR  |->  ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) ) )
177164, 170, 1763eqtr3d 2493 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
x  e.  RR  |->  ( ( sin `  x
) ^ N ) ) )  =  ( x  e.  RR  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) ) )
17812a1i 11 . . . . . 6  |-  ( ph  ->  ( 0 [,] pi )  C_  RR )
179 eqid 2451 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
180179tgioo2 21821 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
18110a1i 11 . . . . . . 7  |-  ( ph  ->  ( 0  e.  RR  /\  pi  e.  RR ) )
182 iccntr 21839 . . . . . . 7  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( ( int `  ( topGen `
 ran  (,) )
) `  ( 0 [,] pi ) )  =  ( 0 (,) pi ) )
183181, 182syl 17 . . . . . 6  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( 0 [,] pi ) )  =  ( 0 (,) pi ) )
184125, 130, 137, 177, 178, 180, 179, 183dvmptres2 22916 . . . . 5  |-  ( ph  ->  ( RR  _D  (
x  e.  ( 0 [,] pi )  |->  ( ( sin `  x
) ^ N ) ) )  =  ( x  e.  ( 0 (,) pi )  |->  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) ) )
185135negcld 9973 . . . . . . 7  |-  ( x  e.  RR  ->  -u ( cos `  x )  e.  CC )
186185adantl 468 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  -u ( cos `  x )  e.  CC )
187127negcld 9973 . . . . . . . . 9  |-  ( x  e.  RR  ->  -u ( sin `  x )  e.  CC )
188187adantl 468 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  -u ( sin `  x )  e.  CC )
189 dvcosre 37781 . . . . . . . . 9  |-  ( RR 
_D  ( x  e.  RR  |->  ( cos `  x
) ) )  =  ( x  e.  RR  |->  -u ( sin `  x
) )
190189a1i 11 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  RR  |->  ( cos `  x ) ) )  =  ( x  e.  RR  |->  -u ( sin `  x ) ) )
191125, 136, 188, 190dvmptneg 22920 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  RR  |->  -u ( cos `  x ) ) )  =  ( x  e.  RR  |->  -u -u ( sin `  x
) ) )
192127negnegd 9977 . . . . . . . . 9  |-  ( x  e.  RR  ->  -u -u ( sin `  x )  =  ( sin `  x
) )
193192adantl 468 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  -u -u ( sin `  x )  =  ( sin `  x
) )
194193mpteq2dva 4489 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  -u -u ( sin `  x
) )  =  ( x  e.  RR  |->  ( sin `  x ) ) )
195191, 194eqtrd 2485 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
x  e.  RR  |->  -u ( cos `  x ) ) )  =  ( x  e.  RR  |->  ( sin `  x ) ) )
196125, 186, 128, 195, 178, 180, 179, 183dvmptres2 22916 . . . . 5  |-  ( ph  ->  ( RR  _D  (
x  e.  ( 0 [,] pi )  |->  -u ( cos `  x ) ) )  =  ( x  e.  ( 0 (,) pi )  |->  ( sin `  x ) ) )
197 fveq2 5865 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( sin `  x )  =  ( sin `  0
) )
198 sin0 14203 . . . . . . . . . . 11  |-  ( sin `  0 )  =  0
199197, 198syl6eq 2501 . . . . . . . . . 10  |-  ( x  =  0  ->  ( sin `  x )  =  0 )
200199oveq1d 6305 . . . . . . . . 9  |-  ( x  =  0  ->  (
( sin `  x
) ^ N )  =  ( 0 ^ N ) )
201200adantl 468 . . . . . . . 8  |-  ( (
ph  /\  x  = 
0 )  ->  (
( sin `  x
) ^ N )  =  ( 0 ^ N ) )
20219adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  x  = 
0 )  ->  N  e.  NN )
2032020expd 12432 . . . . . . . 8  |-  ( (
ph  /\  x  = 
0 )  ->  (
0 ^ N )  =  0 )
204201, 203eqtrd 2485 . . . . . . 7  |-  ( (
ph  /\  x  = 
0 )  ->  (
( sin `  x
) ^ N )  =  0 )
205204oveq1d 6305 . . . . . 6  |-  ( (
ph  /\  x  = 
0 )  ->  (
( ( sin `  x
) ^ N )  x.  -u ( cos `  x
) )  =  ( 0  x.  -u ( cos `  x ) ) )
206 id 22 . . . . . . . . . 10  |-  ( x  =  0  ->  x  =  0 )
207 0cn 9635 . . . . . . . . . 10  |-  0  e.  CC
208206, 207syl6eqel 2537 . . . . . . . . 9  |-  ( x  =  0  ->  x  e.  CC )
209 coscl 14181 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( cos `  x )  e.  CC )
210209negcld 9973 . . . . . . . . 9  |-  ( x  e.  CC  ->  -u ( cos `  x )  e.  CC )
211208, 210syl 17 . . . . . . . 8  |-  ( x  =  0  ->  -u ( cos `  x )  e.  CC )
212211adantl 468 . . . . . . 7  |-  ( (
ph  /\  x  = 
0 )  ->  -u ( cos `  x )  e.  CC )
213212mul02d 9831 . . . . . 6  |-  ( (
ph  /\  x  = 
0 )  ->  (
0  x.  -u ( cos `  x ) )  =  0 )
214205, 213eqtrd 2485 . . . . 5  |-  ( (
ph  /\  x  = 
0 )  ->  (
( ( sin `  x
) ^ N )  x.  -u ( cos `  x
) )  =  0 )
215 fveq2 5865 . . . . . . . . . . 11  |-  ( x  =  pi  ->  ( sin `  x )  =  ( sin `  pi ) )
216 sinpi 23412 . . . . . . . . . . 11  |-  ( sin `  pi )  =  0
217215, 216syl6eq 2501 . . . . . . . . . 10  |-  ( x  =  pi  ->  ( sin `  x )  =  0 )
218217oveq1d 6305 . . . . . . . . 9  |-  ( x  =  pi  ->  (
( sin `  x
) ^ N )  =  ( 0 ^ N ) )
219218adantl 468 . . . . . . . 8  |-  ( (
ph  /\  x  =  pi )  ->  ( ( sin `  x ) ^ N )  =  ( 0 ^ N
) )
22019adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  x  =  pi )  ->  N  e.  NN )
2212200expd 12432 . . . . . . . 8  |-  ( (
ph  /\  x  =  pi )  ->  ( 0 ^ N )  =  0 )
222219, 221eqtrd 2485 . . . . . . 7  |-  ( (
ph  /\  x  =  pi )  ->  ( ( sin `  x ) ^ N )  =  0 )
223222oveq1d 6305 . . . . . 6  |-  ( (
ph  /\  x  =  pi )  ->  ( ( ( sin `  x
) ^ N )  x.  -u ( cos `  x
) )  =  ( 0  x.  -u ( cos `  x ) ) )
224 id 22 . . . . . . . . . . 11  |-  ( x  =  pi  ->  x  =  pi )
225 picn 23414 . . . . . . . . . . 11  |-  pi  e.  CC
226224, 225syl6eqel 2537 . . . . . . . . . 10  |-  ( x  =  pi  ->  x  e.  CC )
227226coscld 14185 . . . . . . . . 9  |-  ( x  =  pi  ->  ( cos `  x )  e.  CC )
228227negcld 9973 . . . . . . . 8  |-  ( x  =  pi  ->  -u ( cos `  x )  e.  CC )
229228adantl 468 . . . . . . 7  |-  ( (
ph  /\  x  =  pi )  ->  -u ( cos `  x )  e.  CC )
230229mul02d 9831 . . . . . 6  |-  ( (
ph  /\  x  =  pi )  ->  ( 0  x.  -u ( cos `  x
) )  =  0 )
231223, 230eqtrd 2485 . . . . 5  |-  ( (
ph  /\  x  =  pi )  ->  ( ( ( sin `  x
) ^ N )  x.  -u ( cos `  x
) )  =  0 )
2324, 6, 9, 37, 53, 81, 82, 105, 123, 184, 196, 214, 231itgparts 22999 . . . 4  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  _d x  =  ( ( 0  -  0 )  -  S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  x.  ( cos `  x
) )  x.  -u ( cos `  x ) )  _d x ) )
233 df-neg 9863 . . . . 5  |-  -u S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  x.  ( cos `  x
) )  x.  -u ( cos `  x ) )  _d x  =  ( 0  -  S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x )
234233a1i 11 . . . 4  |-  ( ph  -> 
-u S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x  =  ( 0  -  S. ( 0 (,) pi ) ( ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x ) )
2352, 232, 2343eqtr4a 2511 . . 3  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  _d x  =  -u S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x )
23677, 79, 79mulassd 9666 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  ( cos `  x
) )  =  ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( ( cos `  x )  x.  ( cos `  x
) ) ) )
237 sqval 12334 . . . . . . . . . . . . . 14  |-  ( ( cos `  x )  e.  CC  ->  (
( cos `  x
) ^ 2 )  =  ( ( cos `  x )  x.  ( cos `  x ) ) )
238237eqcomd 2457 . . . . . . . . . . . . 13  |-  ( ( cos `  x )  e.  CC  ->  (
( cos `  x
)  x.  ( cos `  x ) )  =  ( ( cos `  x
) ^ 2 ) )
23978, 238syl 17 . . . . . . . . . . . 12  |-  ( x  e.  ( 0 (,) pi )  ->  (
( cos `  x
)  x.  ( cos `  x ) )  =  ( ( cos `  x
) ^ 2 ) )
240239adantl 468 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( cos `  x
)  x.  ( cos `  x ) )  =  ( ( cos `  x
) ^ 2 ) )
241240oveq2d 6306 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( ( cos `  x )  x.  ( cos `  x
) ) )  =  ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( ( cos `  x ) ^ 2 ) ) )
24278sqcld 12414 . . . . . . . . . . . 12  |-  ( x  e.  ( 0 (,) pi )  ->  (
( cos `  x
) ^ 2 )  e.  CC )
243242adantl 468 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( cos `  x
) ^ 2 )  e.  CC )
24471, 76, 243mulassd 9666 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( ( cos `  x ) ^ 2 ) )  =  ( N  x.  ( ( ( sin `  x ) ^ ( N  -  1 ) )  x.  ( ( cos `  x ) ^ 2 ) ) ) )
245241, 244eqtrd 2485 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( ( cos `  x )  x.  ( cos `  x
) ) )  =  ( N  x.  (
( ( sin `  x
) ^ ( N  -  1 ) )  x.  ( ( cos `  x ) ^ 2 ) ) ) )
24676, 243mulcomd 9664 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( sin `  x
) ^ ( N  -  1 ) )  x.  ( ( cos `  x ) ^ 2 ) )  =  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) )
247246oveq2d 6306 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( N  x.  ( (
( sin `  x
) ^ ( N  -  1 ) )  x.  ( ( cos `  x ) ^ 2 ) ) )  =  ( N  x.  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) ) )
248236, 245, 2473eqtrd 2489 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  ( cos `  x
) )  =  ( N  x.  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) ) )
249248negeqd 9869 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  -u (
( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  ( cos `  x
) )  =  -u ( N  x.  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) ) )
25080, 79mulneg2d 10072 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  =  -u ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  ( cos `  x
) ) )
251243, 76mulcld 9663 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  e.  CC )
25271, 251mulneg1d 10071 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( -u N  x.  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) )  = 
-u ( N  x.  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) ) )
253249, 250, 2523eqtr4d 2495 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  =  (
-u N  x.  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) ) )
254253itgeq2dv 22739 . . . . 5  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x  =  S. ( 0 (,) pi ) (
-u N  x.  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) )  _d x )
25557negcld 9973 . . . . . 6  |-  ( ph  -> 
-u N  e.  CC )
25638sqcld 12414 . . . . . . . . 9  |-  ( x  e.  ( 0 [,] pi )  ->  (
( cos `  x
) ^ 2 )  e.  CC )
257256adantl 468 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( cos `  x
) ^ 2 )  e.  CC )
258257, 108mulcld 9663 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  e.  CC )
259 itgsinexplem1.6 . . . . . . . . . . . . 13  |-  M  =  ( x  e.  CC  |->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )
260259fvmpt2 5957 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  e.  CC )  -> 
( M `  x
)  =  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) )
26116, 258, 260syl2anc 667 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( M `  x )  =  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) ) )
262261eqcomd 2457 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  =  ( M `  x ) )
263262mpteq2dva 4489 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )  =  ( x  e.  ( 0 [,] pi )  |->  ( M `
 x ) ) )
264 nfmpt1 4492 . . . . . . . . . . 11  |-  F/_ x
( x  e.  CC  |->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )
265259, 264nfcxfr 2590 . . . . . . . . . 10  |-  F/_ x M
266 nfcv 2592 . . . . . . . . . . . . 13  |-  F/_ x cos
267 2nn0 10886 . . . . . . . . . . . . . 14  |-  2  e.  NN0
268267a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  NN0 )
269266, 49, 268expcnfg 37671 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  CC  |->  ( ( cos `  x
) ^ 2 ) )  e.  ( CC
-cn-> CC ) )
270269, 61mulcncf 22398 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  CC  |->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )  e.  ( CC
-cn-> CC ) )
271259, 270syl5eqel 2533 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( CC
-cn-> CC ) )
272265, 271, 35cncfmptss 37665 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( M `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
273263, 272eqeltrd 2529 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )
274 cniccibl 22798 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  (
x  e.  ( 0 [,] pi )  |->  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )  ->  ( x  e.  ( 0 [,] pi )  |->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) ) )  e.  L^1 )
2754, 6, 273, 274syl3anc 1268 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )  e.  L^1 )
27684, 86, 258, 275iblss 22762 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) ) )  e.  L^1 )
277255, 251, 276itgmulc2 22791 . . . . 5  |-  ( ph  ->  ( -u N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x )  =  S. ( 0 (,) pi ) (
-u N  x.  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) )  _d x )
278254, 277eqtr4d 2488 . . . 4  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( N  x.  (
( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x  =  ( -u N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  _d x ) )
279278negeqd 9869 . . 3  |-  ( ph  -> 
-u S. ( 0 (,) pi ) ( ( ( N  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) )  _d x  =  -u ( -u N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  _d x ) )
280235, 279eqtrd 2485 . 2  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  _d x  =  -u ( -u N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  _d x ) )
281251, 276itgcl 22741 . . . 4  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  _d x  e.  CC )
28257, 281mulneg1d 10071 . . 3  |-  ( ph  ->  ( -u N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x )  =  -u ( N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x ) )
283282negeqd 9869 . 2  |-  ( ph  -> 
-u ( -u N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  _d x )  =  -u -u ( N  x.  S. (
0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  _d x ) )
28457, 281mulcld 9663 . . 3  |-  ( ph  ->  ( N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x )  e.  CC )
285284negnegd 9977 . 2  |-  ( ph  -> 
-u -u ( N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x )  =  ( N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x ) )
286280, 283, 2853eqtrd 2489 1  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ N )  x.  ( sin `  x
) )  _d x  =  ( N  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  1 ) ) )  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371   A.wal 1442    = wceq 1444    e. wcel 1887   {crab 2741   _Vcvv 3045    C_ wss 3404   {cpr 3970   class class class wbr 4402    |-> cmpt 4461   dom cdm 4834   ran crn 4835    |` cres 4836   -->wf 5578   ` cfv 5582  (class class class)co 6290   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540    x. cmul 9544    <_ cle 9676    - cmin 9860   -ucneg 9861   NNcn 10609   2c2 10659   NN0cn0 10869   (,)cioo 11635   [,]cicc 11638   ^cexp 12272   sincsin 14116   cosccos 14117   picpi 14119   TopOpenctopn 15320   topGenctg 15336  ℂfldccnfld 18970   intcnt 20032   -cn->ccncf 21908   volcvol 22415   L^1cibl 22575   S.citg 22576    _D cdv 22818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cc 8865  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-disj 4374  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-ofr 6532  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-omul 7187  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-acn 8376  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-mod 12097  df-seq 12214  df-exp 12273  df-fac 12460  df-bc 12488  df-hash 12516  df-shft 13130  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13526  df-clim 13552  df-rlim 13553  df-sum 13753  df-ef 14121  df-sin 14123  df-cos 14124  df-pi 14126  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lp 20152  df-perf 20153  df-cn 20243  df-cnp 20244  df-haus 20331  df-cmp 20402  df-tx 20577  df-hmeo 20770  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-xms 21335  df-ms 21336  df-tms 21337  df-cncf 21910  df-ovol 22416  df-vol 22418  df-mbf 22577  df-itg1 22578  df-itg2 22579  df-ibl 22580  df-itg 22581  df-0p 22628  df-limc 22821  df-dv 22822
This theorem is referenced by:  itgsinexp  37831
  Copyright terms: Public domain W3C validator