Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexp Structured version   Unicode version

Theorem itgsinexp 29641
Description: A recursive formula for the integral of sin^N on the interval (0,π) .

(Contributed by Glauco Siliprandi, 29-Jun-2017.)

Hypotheses
Ref Expression
itgsinexp.1  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
itgsinexp.2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
Assertion
Ref Expression
itgsinexp  |-  ( ph  ->  ( I `  N
)  =  ( ( ( N  -  1 )  /  N )  x.  ( I `  ( N  -  2
) ) ) )
Distinct variable groups:    x, n, N    ph, n, x
Allowed substitution hints:    I( x, n)

Proof of Theorem itgsinexp
StepHypRef Expression
1 itgsinexp.2 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
2 eluzelz 10858 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
3 zcn 10639 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  CC )
41, 2, 33syl 20 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
5 ax-1cn 9328 . . . . . . . 8  |-  1  e.  CC
65a1i 11 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
74, 6npcand 9711 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
87eqcomd 2438 . . . . 5  |-  ( ph  ->  N  =  ( ( N  -  1 )  +  1 ) )
98oveq1d 6095 . . . 4  |-  ( ph  ->  ( N  x.  (
I `  N )
)  =  ( ( ( N  -  1 )  +  1 )  x.  ( I `  N ) ) )
10 uz2m1nn 10917 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  e.  NN )
111, 10syl 16 . . . . . . 7  |-  ( ph  ->  ( N  -  1 )  e.  NN )
1211nncnd 10326 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  CC )
13 itgsinexp.1 . . . . . . . . 9  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
1413a1i 11 . . . . . . . 8  |-  ( ph  ->  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x
) ^ n )  _d x ) )
15 oveq2 6088 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( sin `  x
) ^ n )  =  ( ( sin `  x ) ^ N
) )
1615ad2antlr 719 . . . . . . . . 9  |-  ( ( ( ph  /\  n  =  N )  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ n )  =  ( ( sin `  x ) ^ N
) )
1716itgeq2dv 21101 . . . . . . . 8  |-  ( (
ph  /\  n  =  N )  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x )
18 2cnd 10382 . . . . . . . . . 10  |-  ( ph  ->  2  e.  CC )
19 npcan 9607 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  2  e.  CC )  ->  ( ( N  - 
2 )  +  2 )  =  N )
2019eqcomd 2438 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  2  e.  CC )  ->  N  =  ( ( N  -  2 )  +  2 ) )
214, 18, 20syl2anc 654 . . . . . . . . 9  |-  ( ph  ->  N  =  ( ( N  -  2 )  +  2 ) )
22 uznn0sub 10880 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  2 )  e. 
NN0 )
231, 22syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  2 )  e.  NN0 )
24 2nn0 10584 . . . . . . . . . . 11  |-  2  e.  NN0
2524a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  e.  NN0 )
2623, 25nn0addcld 10628 . . . . . . . . 9  |-  ( ph  ->  ( ( N  - 
2 )  +  2 )  e.  NN0 )
2721, 26eqeltrd 2507 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
28 itgex 21090 . . . . . . . . 9  |-  S. ( 0 (,) pi ) ( ( sin `  x
) ^ N )  _d x  e.  _V
2928a1i 11 . . . . . . . 8  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x  e.  _V )
3014, 17, 27, 29fvmptd 5767 . . . . . . 7  |-  ( ph  ->  ( I `  N
)  =  S. ( 0 (,) pi ) ( ( sin `  x
) ^ N )  _d x )
31 ioossre 11345 . . . . . . . . . . . . 13  |-  ( 0 (,) pi )  C_  RR
32 ax-resscn 9327 . . . . . . . . . . . . 13  |-  RR  C_  CC
3331, 32sstri 3353 . . . . . . . . . . . 12  |-  ( 0 (,) pi )  C_  CC
3433sseli 3340 . . . . . . . . . . 11  |-  ( x  e.  ( 0 (,) pi )  ->  x  e.  CC )
3534sincld 13397 . . . . . . . . . 10  |-  ( x  e.  ( 0 (,) pi )  ->  ( sin `  x )  e.  CC )
3635adantl 463 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( sin `  x )  e.  CC )
3727adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  N  e.  NN0 )
3836, 37expcld 11992 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ N )  e.  CC )
39 ioossicc 11369 . . . . . . . . . 10  |-  ( 0 (,) pi )  C_  ( 0 [,] pi )
4039a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 0 (,) pi )  C_  ( 0 [,] pi ) )
41 ioombl 20888 . . . . . . . . . 10  |-  ( 0 (,) pi )  e. 
dom  vol
4241a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 0 (,) pi )  e.  dom  vol )
43 0re 9374 . . . . . . . . . . . . . . 15  |-  0  e.  RR
44 pire 21806 . . . . . . . . . . . . . . 15  |-  pi  e.  RR
45 iccssre 11365 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( 0 [,] pi )  C_  RR )
4643, 44, 45mp2an 665 . . . . . . . . . . . . . 14  |-  ( 0 [,] pi )  C_  RR
4746, 32sstri 3353 . . . . . . . . . . . . 13  |-  ( 0 [,] pi )  C_  CC
4847sseli 3340 . . . . . . . . . . . 12  |-  ( x  e.  ( 0 [,] pi )  ->  x  e.  CC )
4948sincld 13397 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] pi )  ->  ( sin `  x )  e.  CC )
5049adantl 463 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( sin `  x )  e.  CC )
5127adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  N  e.  NN0 )
5250, 51expcld 11992 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ N )  e.  CC )
5343a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
5444a1i 11 . . . . . . . . . 10  |-  ( ph  ->  pi  e.  RR )
5548adantl 463 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  x  e.  CC )
56 eqid 2433 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  |->  ( ( sin `  x ) ^ N ) )  =  ( x  e.  CC  |->  ( ( sin `  x ) ^ N
) )
5756fvmpt2 5769 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( ( sin `  x
) ^ N )  e.  CC )  -> 
( ( x  e.  CC  |->  ( ( sin `  x ) ^ N
) ) `  x
)  =  ( ( sin `  x ) ^ N ) )
5855, 52, 57syl2anc 654 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( x  e.  CC  |->  ( ( sin `  x
) ^ N ) ) `  x )  =  ( ( sin `  x ) ^ N
) )
5958eqcomd 2438 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ N )  =  ( ( x  e.  CC  |->  ( ( sin `  x ) ^ N ) ) `
 x ) )
6059mpteq2dva 4366 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  =  ( x  e.  ( 0 [,] pi )  |->  ( ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) ) `  x ) ) )
61 nfmpt1 4369 . . . . . . . . . . . 12  |-  F/_ x
( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )
62 nfcv 2569 . . . . . . . . . . . . 13  |-  F/_ x sin
63 sincn 21794 . . . . . . . . . . . . . 14  |-  sin  e.  ( CC -cn-> CC )
6463a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  sin  e.  ( CC
-cn-> CC ) )
6562, 64, 27expcnfg 29619 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )  e.  ( CC
-cn-> CC ) )
6647a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0 [,] pi )  C_  CC )
6761, 65, 66cncfmptss 29613 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( x  e.  CC  |->  ( ( sin `  x ) ^ N
) ) `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
6860, 67eqeltrd 2507 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )
69 cniccibl 21160 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  (
x  e.  ( 0 [,] pi )  |->  ( ( sin `  x
) ^ N ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )  -> 
( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  L^1 )
7053, 54, 68, 69syl3anc 1211 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  L^1 )
7140, 42, 52, 70iblss 21124 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  L^1 )
7238, 71itgcl 21103 . . . . . . 7  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x  e.  CC )
7330, 72eqeltrd 2507 . . . . . 6  |-  ( ph  ->  ( I `  N
)  e.  CC )
7412, 6, 73adddird 9399 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 )  x.  (
I `  N )
)  =  ( ( ( N  -  1 )  x.  ( I `
 N ) )  +  ( 1  x.  ( I `  N
) ) ) )
7573mulid2d 9392 . . . . . 6  |-  ( ph  ->  ( 1  x.  (
I `  N )
)  =  ( I `
 N ) )
7675oveq2d 6096 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  x.  ( I `  N
) )  +  ( 1  x.  ( I `
 N ) ) )  =  ( ( ( N  -  1 )  x.  ( I `
 N ) )  +  ( I `  N ) ) )
7774, 76eqtrd 2465 . . . 4  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 )  x.  (
I `  N )
)  =  ( ( ( N  -  1 )  x.  ( I `
 N ) )  +  ( I `  N ) ) )
78 eluz2b2 10915 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
791, 78sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  ( N  e.  NN  /\  1  <  N ) )
8079simpld 456 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN )
81 expm1t 11876 . . . . . . . . . 10  |-  ( ( ( sin `  x
)  e.  CC  /\  N  e.  NN )  ->  ( ( sin `  x
) ^ N )  =  ( ( ( sin `  x ) ^ ( N  - 
1 ) )  x.  ( sin `  x
) ) )
8235, 80, 81syl2anr 475 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ N )  =  ( ( ( sin `  x ) ^ ( N  - 
1 ) )  x.  ( sin `  x
) ) )
8382itgeq2dv 21101 . . . . . . . 8  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x  =  S. ( 0 (,) pi ) ( ( ( sin `  x ) ^ ( N  -  1 ) )  x.  ( sin `  x ) )  _d x )
84 eqid 2433 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  =  ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  -  1 ) ) )
85 eqid 2433 . . . . . . . . . 10  |-  ( x  e.  CC  |->  -u ( cos `  x ) )  =  ( x  e.  CC  |->  -u ( cos `  x
) )
86 eqid 2433 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( ( N  -  1 )  x.  ( ( sin `  x ) ^ ( ( N  -  1 )  - 
1 ) ) )  x.  ( cos `  x
) ) )  =  ( x  e.  CC  |->  ( ( ( N  -  1 )  x.  ( ( sin `  x
) ^ ( ( N  -  1 )  -  1 ) ) )  x.  ( cos `  x ) ) )
87 eqid 2433 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( ( sin `  x
) ^ ( N  -  1 ) )  x.  ( sin `  x
) ) )  =  ( x  e.  CC  |->  ( ( ( sin `  x ) ^ ( N  -  1 ) )  x.  ( sin `  x ) ) )
88 eqid 2433 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( ( ( N  - 
1 )  x.  (
( sin `  x
) ^ ( ( N  -  1 )  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )  =  ( x  e.  CC  |->  ( ( ( ( N  -  1 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )
89 eqid 2433 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) ) )  =  ( x  e.  CC  |->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( ( N  -  1 )  - 
1 ) ) ) )
9084, 85, 86, 87, 88, 89, 11itgsinexplem1 29640 . . . . . . . . 9  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ ( N  -  1 ) )  x.  ( sin `  x
) )  _d x  =  ( ( N  -  1 )  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) )  _d x ) )
914, 6, 6subsub4d 9738 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( N  - 
1 )  -  1 )  =  ( N  -  ( 1  +  1 ) ) )
92 1p1e2 10423 . . . . . . . . . . . . . . . . 17  |-  ( 1  +  1 )  =  2
9392a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  +  1 )  =  2 )
9493oveq2d 6096 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  -  (
1  +  1 ) )  =  ( N  -  2 ) )
9591, 94eqtrd 2465 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( N  - 
1 )  -  1 )  =  ( N  -  2 ) )
9695adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( N  -  1 )  -  1 )  =  ( N  - 
2 ) )
9796oveq2d 6096 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( ( N  -  1 )  -  1 ) )  =  ( ( sin `  x ) ^ ( N  -  2 ) ) )
9897oveq2d 6096 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) )  =  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) ) )
9998itgeq2dv 21101 . . . . . . . . . 10  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) )  _d x  =  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x )
10099oveq2d 6096 . . . . . . . . 9  |-  ( ph  ->  ( ( N  - 
1 )  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( ( N  -  1 )  -  1 ) ) )  _d x )  =  ( ( N  -  1 )  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x ) )
101 sincossq 13443 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
( ( sin `  x
) ^ 2 )  +  ( ( cos `  x ) ^ 2 ) )  =  1 )
1025a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  1  e.  CC )
103 sincl 13393 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  ( sin `  x )  e.  CC )
104103sqcld 11990 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( sin `  x
) ^ 2 )  e.  CC )
105 coscl 13394 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  ( cos `  x )  e.  CC )
106105sqcld 11990 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( cos `  x
) ^ 2 )  e.  CC )
107102, 104, 106subaddd 9725 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
( 1  -  (
( sin `  x
) ^ 2 ) )  =  ( ( cos `  x ) ^ 2 )  <->  ( (
( sin `  x
) ^ 2 )  +  ( ( cos `  x ) ^ 2 ) )  =  1 ) )
108101, 107mpbird 232 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
1  -  ( ( sin `  x ) ^ 2 ) )  =  ( ( cos `  x ) ^ 2 ) )
109108eqcomd 2438 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
( cos `  x
) ^ 2 )  =  ( 1  -  ( ( sin `  x
) ^ 2 ) ) )
11034, 109syl 16 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 0 (,) pi )  ->  (
( cos `  x
) ^ 2 )  =  ( 1  -  ( ( sin `  x
) ^ 2 ) ) )
111110oveq1d 6095 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0 (,) pi )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  =  ( ( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) ) )
112111adantl 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  =  ( ( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) ) )
113112itgeq2dv 21101 . . . . . . . . . . 11  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x  =  S. ( 0 (,) pi ) ( ( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  _d x )
1145a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  1  e.  CC )
11535sqcld 11990 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0 (,) pi )  ->  (
( sin `  x
) ^ 2 )  e.  CC )
116115adantl 463 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ 2 )  e.  CC )
11795eqcomd 2438 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( N  -  2 )  =  ( ( N  -  1 )  -  1 ) )
118 nnm1nn0 10609 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  -  1 )  e.  NN  ->  (
( N  -  1 )  -  1 )  e.  NN0 )
11911, 118syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( N  - 
1 )  -  1 )  e.  NN0 )
120117, 119eqeltrd 2507 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( N  -  2 )  e.  NN0 )
121120adantr 462 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( N  -  2 )  e.  NN0 )
12236, 121expcld 11992 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( N  -  2 ) )  e.  CC )
123114, 116, 122subdird 9789 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  =  ( ( 1  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  -  (
( ( sin `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) ) ) )
124122mulid2d 9392 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
1  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  =  ( ( sin `  x ) ^ ( N  -  2 ) ) )
12524a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  2  e.  NN0 )
12636, 121, 125expaddd 11994 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( 2  +  ( N  - 
2 ) ) )  =  ( ( ( sin `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  2 ) ) ) )
12718, 4pncan3d 9710 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  +  ( N  -  2 ) )  =  N )
128127oveq2d 6096 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( sin `  x
) ^ ( 2  +  ( N  - 
2 ) ) )  =  ( ( sin `  x ) ^ N
) )
129128adantr 462 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( 2  +  ( N  - 
2 ) ) )  =  ( ( sin `  x ) ^ N
) )
130126, 129eqtr3d 2467 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( sin `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  =  ( ( sin `  x
) ^ N ) )
131124, 130oveq12d 6098 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( 1  x.  (
( sin `  x
) ^ ( N  -  2 ) ) )  -  ( ( ( sin `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) ) )  =  ( ( ( sin `  x ) ^ ( N  -  2 ) )  -  ( ( sin `  x ) ^ N ) ) )
132123, 131eqtrd 2465 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  =  ( ( ( sin `  x ) ^ ( N  - 
2 ) )  -  ( ( sin `  x
) ^ N ) ) )
133132itgeq2dv 21101 . . . . . . . . . . 11  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( 1  -  ( ( sin `  x ) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x  =  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ ( N  -  2 ) )  -  ( ( sin `  x ) ^ N
) )  _d x )
134120adantr 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( N  -  2 )  e.  NN0 )
13550, 134expcld 11992 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ ( N  -  2 ) )  e.  CC )
136 eqid 2433 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  =  ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  -  2 ) ) )
137136fvmpt2 5769 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( ( sin `  x
) ^ ( N  -  2 ) )  e.  CC )  -> 
( ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  -  2 ) ) ) `  x
)  =  ( ( sin `  x ) ^ ( N  - 
2 ) ) )
13855, 135, 137syl2anc 654 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) ) `  x )  =  ( ( sin `  x ) ^ ( N  -  2 ) ) )
139138eqcomd 2438 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ ( N  -  2 ) )  =  ( ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  - 
2 ) ) ) `
 x ) )
140139mpteq2dva 4366 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  =  ( x  e.  ( 0 [,] pi )  |->  ( ( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) ) `  x ) ) )
141 nfmpt1 4369 . . . . . . . . . . . . . . . 16  |-  F/_ x
( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) )
14262, 64, 120expcnfg 29619 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  ( CC
-cn-> CC ) )
143141, 142, 66cncfmptss 29613 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  -  2 ) ) ) `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
144140, 143eqeltrd 2507 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )
145 cniccibl 21160 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  (
x  e.  ( 0 [,] pi )  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )  -> 
( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  L^1 )
14653, 54, 144, 145syl3anc 1211 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  L^1 )
14740, 42, 135, 146iblss 21124 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  L^1 )
148122, 147, 38, 71itgsub 21145 . . . . . . . . . . 11  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ ( N  -  2 ) )  -  ( ( sin `  x ) ^ N
) )  _d x  =  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) )
149113, 133, 1483eqtrd 2469 . . . . . . . . . 10  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x  =  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) )
150149oveq2d 6096 . . . . . . . . 9  |-  ( ph  ->  ( ( N  - 
1 )  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  2 ) ) )  _d x )  =  ( ( N  -  1 )  x.  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) ) )
15190, 100, 1503eqtrd 2469 . . . . . . . 8  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ ( N  -  1 ) )  x.  ( sin `  x
) )  _d x  =  ( ( N  -  1 )  x.  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) ) )
15230, 83, 1513eqtrd 2469 . . . . . . 7  |-  ( ph  ->  ( I `  N
)  =  ( ( N  -  1 )  x.  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) ) )
153 oveq2 6088 . . . . . . . . . . . . 13  |-  ( n  =  ( N  - 
2 )  ->  (
( sin `  x
) ^ n )  =  ( ( sin `  x ) ^ ( N  -  2 ) ) )
154153adantr 462 . . . . . . . . . . . 12  |-  ( ( n  =  ( N  -  2 )  /\  x  e.  ( 0 (,) pi ) )  ->  ( ( sin `  x ) ^ n
)  =  ( ( sin `  x ) ^ ( N  - 
2 ) ) )
155154itgeq2dv 21101 . . . . . . . . . . 11  |-  ( n  =  ( N  - 
2 )  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  - 
2 ) )  _d x )
156155adantl 463 . . . . . . . . . 10  |-  ( (
ph  /\  n  =  ( N  -  2
) )  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  - 
2 ) )  _d x )
157 itgex 21090 . . . . . . . . . . 11  |-  S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  e.  _V
158157a1i 11 . . . . . . . . . 10  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  - 
2 ) )  _d x  e.  _V )
15914, 156, 120, 158fvmptd 5767 . . . . . . . . 9  |-  ( ph  ->  ( I `  ( N  -  2 ) )  =  S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x )
160159, 30oveq12d 6098 . . . . . . . 8  |-  ( ph  ->  ( ( I `  ( N  -  2
) )  -  (
I `  N )
)  =  ( S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) )
161160oveq2d 6096 . . . . . . 7  |-  ( ph  ->  ( ( N  - 
1 )  x.  (
( I `  ( N  -  2 ) )  -  ( I `
 N ) ) )  =  ( ( N  -  1 )  x.  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) ) )
162122, 147itgcl 21103 . . . . . . . . 9  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  - 
2 ) )  _d x  e.  CC )
163159, 162eqeltrd 2507 . . . . . . . 8  |-  ( ph  ->  ( I `  ( N  -  2 ) )  e.  CC )
16412, 163, 73subdid 9788 . . . . . . 7  |-  ( ph  ->  ( ( N  - 
1 )  x.  (
( I `  ( N  -  2 ) )  -  ( I `
 N ) ) )  =  ( ( ( N  -  1 )  x.  ( I `
 ( N  - 
2 ) ) )  -  ( ( N  -  1 )  x.  ( I `  N
) ) ) )
165152, 161, 1643eqtr2d 2471 . . . . . 6  |-  ( ph  ->  ( I `  N
)  =  ( ( ( N  -  1 )  x.  ( I `
 ( N  - 
2 ) ) )  -  ( ( N  -  1 )  x.  ( I `  N
) ) ) )
166165eqcomd 2438 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  x.  ( I `  ( N  -  2 ) ) )  -  (
( N  -  1 )  x.  ( I `
 N ) ) )  =  ( I `
 N ) )
16712, 163mulcld 9394 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  x.  (
I `  ( N  -  2 ) ) )  e.  CC )
16812, 73mulcld 9394 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  x.  (
I `  N )
)  e.  CC )
169167, 168, 73subaddd 9725 . . . . 5  |-  ( ph  ->  ( ( ( ( N  -  1 )  x.  ( I `  ( N  -  2
) ) )  -  ( ( N  - 
1 )  x.  (
I `  N )
) )  =  ( I `  N )  <-> 
( ( ( N  -  1 )  x.  ( I `  N
) )  +  ( I `  N ) )  =  ( ( N  -  1 )  x.  ( I `  ( N  -  2
) ) ) ) )
170166, 169mpbid 210 . . . 4  |-  ( ph  ->  ( ( ( N  -  1 )  x.  ( I `  N
) )  +  ( I `  N ) )  =  ( ( N  -  1 )  x.  ( I `  ( N  -  2
) ) ) )
1719, 77, 1703eqtrd 2469 . . 3  |-  ( ph  ->  ( N  x.  (
I `  N )
)  =  ( ( N  -  1 )  x.  ( I `  ( N  -  2
) ) ) )
172171oveq1d 6095 . 2  |-  ( ph  ->  ( ( N  x.  ( I `  N
) )  /  N
)  =  ( ( ( N  -  1 )  x.  ( I `
 ( N  - 
2 ) ) )  /  N ) )
17380nnne0d 10354 . . 3  |-  ( ph  ->  N  =/=  0 )
17473, 4, 173divcan3d 10100 . 2  |-  ( ph  ->  ( ( N  x.  ( I `  N
) )  /  N
)  =  ( I `
 N ) )
17512, 163, 4, 173div23d 10132 . 2  |-  ( ph  ->  ( ( ( N  -  1 )  x.  ( I `  ( N  -  2 ) ) )  /  N
)  =  ( ( ( N  -  1 )  /  N )  x.  ( I `  ( N  -  2
) ) ) )
176172, 174, 1753eqtr3d 2473 1  |-  ( ph  ->  ( I `  N
)  =  ( ( ( N  -  1 )  /  N )  x.  ( I `  ( N  -  2
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   _Vcvv 2962    C_ wss 3316   class class class wbr 4280    e. cmpt 4338   dom cdm 4827   ` cfv 5406  (class class class)co 6080   CCcc 9268   RRcr 9269   0cc0 9270   1c1 9271    + caddc 9273    x. cmul 9275    < clt 9406    - cmin 9583   -ucneg 9584    / cdiv 9981   NNcn 10310   2c2 10359   NN0cn0 10567   ZZcz 10634   ZZ>=cuz 10849   (,)cioo 11288   [,]cicc 11291   ^cexp 11849   sincsin 13332   cosccos 13333   picpi 13335   -cn->ccncf 20294   volcvol 20789   L^1cibl 20939   S.citg 20940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cc 8592  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-disj 4251  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-ofr 6310  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-omul 6913  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-acn 8100  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-ioc 11293  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-fac 12036  df-bc 12063  df-hash 12088  df-shft 12540  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-limsup 12933  df-clim 12950  df-rlim 12951  df-sum 13148  df-ef 13336  df-sin 13338  df-cos 13339  df-pi 13341  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-mulg 15528  df-cntz 15815  df-cmn 16259  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-fbas 17658  df-fg 17659  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-lp 18582  df-perf 18583  df-cn 18673  df-cnp 18674  df-haus 18761  df-cmp 18832  df-tx 18977  df-hmeo 19170  df-fil 19261  df-fm 19353  df-flim 19354  df-flf 19355  df-xms 19737  df-ms 19738  df-tms 19739  df-cncf 20296  df-ovol 20790  df-vol 20791  df-mbf 20941  df-itg1 20942  df-itg2 20943  df-ibl 20944  df-itg 20945  df-0p 20990  df-limc 21183  df-dv 21184
This theorem is referenced by:  wallispilem2  29707  wallispilem4  29709  wallispilem5  29710
  Copyright terms: Public domain W3C validator