Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexp Structured version   Unicode version

Theorem itgsinexp 29942
Description: A recursive formula for the integral of sin^N on the interval (0,π) . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
itgsinexp.1  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
itgsinexp.2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
Assertion
Ref Expression
itgsinexp  |-  ( ph  ->  ( I `  N
)  =  ( ( ( N  -  1 )  /  N )  x.  ( I `  ( N  -  2
) ) ) )
Distinct variable groups:    x, n, N    ph, n, x
Allowed substitution hints:    I( x, n)

Proof of Theorem itgsinexp
StepHypRef Expression
1 itgsinexp.2 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
2 eluzelz 10980 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
3 zcn 10761 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  CC )
41, 2, 33syl 20 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
5 ax-1cn 9450 . . . . . . . 8  |-  1  e.  CC
65a1i 11 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
74, 6npcand 9833 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
87eqcomd 2462 . . . . 5  |-  ( ph  ->  N  =  ( ( N  -  1 )  +  1 ) )
98oveq1d 6214 . . . 4  |-  ( ph  ->  ( N  x.  (
I `  N )
)  =  ( ( ( N  -  1 )  +  1 )  x.  ( I `  N ) ) )
10 uz2m1nn 11039 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  e.  NN )
111, 10syl 16 . . . . . . 7  |-  ( ph  ->  ( N  -  1 )  e.  NN )
1211nncnd 10448 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  CC )
13 itgsinexp.1 . . . . . . . . 9  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
1413a1i 11 . . . . . . . 8  |-  ( ph  ->  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x
) ^ n )  _d x ) )
15 oveq2 6207 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( sin `  x
) ^ n )  =  ( ( sin `  x ) ^ N
) )
1615ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ph  /\  n  =  N )  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ n )  =  ( ( sin `  x ) ^ N
) )
1716itgeq2dv 21391 . . . . . . . 8  |-  ( (
ph  /\  n  =  N )  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x )
18 2cnd 10504 . . . . . . . . . 10  |-  ( ph  ->  2  e.  CC )
19 npcan 9729 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  2  e.  CC )  ->  ( ( N  - 
2 )  +  2 )  =  N )
2019eqcomd 2462 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  2  e.  CC )  ->  N  =  ( ( N  -  2 )  +  2 ) )
214, 18, 20syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  N  =  ( ( N  -  2 )  +  2 ) )
22 uznn0sub 11002 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  2 )  e. 
NN0 )
231, 22syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  2 )  e.  NN0 )
24 2nn0 10706 . . . . . . . . . . 11  |-  2  e.  NN0
2524a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  e.  NN0 )
2623, 25nn0addcld 10750 . . . . . . . . 9  |-  ( ph  ->  ( ( N  - 
2 )  +  2 )  e.  NN0 )
2721, 26eqeltrd 2542 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
28 itgex 21380 . . . . . . . . 9  |-  S. ( 0 (,) pi ) ( ( sin `  x
) ^ N )  _d x  e.  _V
2928a1i 11 . . . . . . . 8  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x  e.  _V )
3014, 17, 27, 29fvmptd 5887 . . . . . . 7  |-  ( ph  ->  ( I `  N
)  =  S. ( 0 (,) pi ) ( ( sin `  x
) ^ N )  _d x )
31 ioossre 11467 . . . . . . . . . . . . 13  |-  ( 0 (,) pi )  C_  RR
32 ax-resscn 9449 . . . . . . . . . . . . 13  |-  RR  C_  CC
3331, 32sstri 3472 . . . . . . . . . . . 12  |-  ( 0 (,) pi )  C_  CC
3433sseli 3459 . . . . . . . . . . 11  |-  ( x  e.  ( 0 (,) pi )  ->  x  e.  CC )
3534sincld 13531 . . . . . . . . . 10  |-  ( x  e.  ( 0 (,) pi )  ->  ( sin `  x )  e.  CC )
3635adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( sin `  x )  e.  CC )
3727adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  N  e.  NN0 )
3836, 37expcld 12124 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ N )  e.  CC )
39 ioossicc 11491 . . . . . . . . . 10  |-  ( 0 (,) pi )  C_  ( 0 [,] pi )
4039a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 0 (,) pi )  C_  ( 0 [,] pi ) )
41 ioombl 21178 . . . . . . . . . 10  |-  ( 0 (,) pi )  e. 
dom  vol
4241a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 0 (,) pi )  e.  dom  vol )
43 0re 9496 . . . . . . . . . . . . . . 15  |-  0  e.  RR
44 pire 22053 . . . . . . . . . . . . . . 15  |-  pi  e.  RR
45 iccssre 11487 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( 0 [,] pi )  C_  RR )
4643, 44, 45mp2an 672 . . . . . . . . . . . . . 14  |-  ( 0 [,] pi )  C_  RR
4746, 32sstri 3472 . . . . . . . . . . . . 13  |-  ( 0 [,] pi )  C_  CC
4847sseli 3459 . . . . . . . . . . . 12  |-  ( x  e.  ( 0 [,] pi )  ->  x  e.  CC )
4948sincld 13531 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] pi )  ->  ( sin `  x )  e.  CC )
5049adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( sin `  x )  e.  CC )
5127adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  N  e.  NN0 )
5250, 51expcld 12124 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ N )  e.  CC )
5343a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
5444a1i 11 . . . . . . . . . 10  |-  ( ph  ->  pi  e.  RR )
5548adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  x  e.  CC )
56 eqid 2454 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  |->  ( ( sin `  x ) ^ N ) )  =  ( x  e.  CC  |->  ( ( sin `  x ) ^ N
) )
5756fvmpt2 5889 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( ( sin `  x
) ^ N )  e.  CC )  -> 
( ( x  e.  CC  |->  ( ( sin `  x ) ^ N
) ) `  x
)  =  ( ( sin `  x ) ^ N ) )
5855, 52, 57syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( x  e.  CC  |->  ( ( sin `  x
) ^ N ) ) `  x )  =  ( ( sin `  x ) ^ N
) )
5958eqcomd 2462 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ N )  =  ( ( x  e.  CC  |->  ( ( sin `  x ) ^ N ) ) `
 x ) )
6059mpteq2dva 4485 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  =  ( x  e.  ( 0 [,] pi )  |->  ( ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) ) `  x ) ) )
61 nfmpt1 4488 . . . . . . . . . . . 12  |-  F/_ x
( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )
62 nfcv 2616 . . . . . . . . . . . . 13  |-  F/_ x sin
63 sincn 22041 . . . . . . . . . . . . . 14  |-  sin  e.  ( CC -cn-> CC )
6463a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  sin  e.  ( CC
-cn-> CC ) )
6562, 64, 27expcnfg 29920 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  CC  |->  ( ( sin `  x
) ^ N ) )  e.  ( CC
-cn-> CC ) )
6647a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0 [,] pi )  C_  CC )
6761, 65, 66cncfmptss 29915 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( x  e.  CC  |->  ( ( sin `  x ) ^ N
) ) `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
6860, 67eqeltrd 2542 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )
69 cniccibl 21450 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  (
x  e.  ( 0 [,] pi )  |->  ( ( sin `  x
) ^ N ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )  -> 
( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  L^1 )
7053, 54, 68, 69syl3anc 1219 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  L^1 )
7140, 42, 52, 70iblss 21414 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  L^1 )
7238, 71itgcl 21393 . . . . . . 7  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x  e.  CC )
7330, 72eqeltrd 2542 . . . . . 6  |-  ( ph  ->  ( I `  N
)  e.  CC )
7412, 6, 73adddird 9521 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 )  x.  (
I `  N )
)  =  ( ( ( N  -  1 )  x.  ( I `
 N ) )  +  ( 1  x.  ( I `  N
) ) ) )
7573mulid2d 9514 . . . . . 6  |-  ( ph  ->  ( 1  x.  (
I `  N )
)  =  ( I `
 N ) )
7675oveq2d 6215 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  x.  ( I `  N
) )  +  ( 1  x.  ( I `
 N ) ) )  =  ( ( ( N  -  1 )  x.  ( I `
 N ) )  +  ( I `  N ) ) )
7774, 76eqtrd 2495 . . . 4  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 )  x.  (
I `  N )
)  =  ( ( ( N  -  1 )  x.  ( I `
 N ) )  +  ( I `  N ) ) )
78 eluz2b2 11037 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
791, 78sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  ( N  e.  NN  /\  1  <  N ) )
8079simpld 459 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN )
81 expm1t 12008 . . . . . . . . . 10  |-  ( ( ( sin `  x
)  e.  CC  /\  N  e.  NN )  ->  ( ( sin `  x
) ^ N )  =  ( ( ( sin `  x ) ^ ( N  - 
1 ) )  x.  ( sin `  x
) ) )
8235, 80, 81syl2anr 478 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ N )  =  ( ( ( sin `  x ) ^ ( N  - 
1 ) )  x.  ( sin `  x
) ) )
8382itgeq2dv 21391 . . . . . . . 8  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x  =  S. ( 0 (,) pi ) ( ( ( sin `  x ) ^ ( N  -  1 ) )  x.  ( sin `  x ) )  _d x )
84 eqid 2454 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  - 
1 ) ) )  =  ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  -  1 ) ) )
85 eqid 2454 . . . . . . . . . 10  |-  ( x  e.  CC  |->  -u ( cos `  x ) )  =  ( x  e.  CC  |->  -u ( cos `  x
) )
86 eqid 2454 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( ( N  -  1 )  x.  ( ( sin `  x ) ^ ( ( N  -  1 )  - 
1 ) ) )  x.  ( cos `  x
) ) )  =  ( x  e.  CC  |->  ( ( ( N  -  1 )  x.  ( ( sin `  x
) ^ ( ( N  -  1 )  -  1 ) ) )  x.  ( cos `  x ) ) )
87 eqid 2454 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( ( sin `  x
) ^ ( N  -  1 ) )  x.  ( sin `  x
) ) )  =  ( x  e.  CC  |->  ( ( ( sin `  x ) ^ ( N  -  1 ) )  x.  ( sin `  x ) ) )
88 eqid 2454 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( ( ( N  - 
1 )  x.  (
( sin `  x
) ^ ( ( N  -  1 )  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )  =  ( x  e.  CC  |->  ( ( ( ( N  -  1 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x
) ) )
89 eqid 2454 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) ) )  =  ( x  e.  CC  |->  ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( ( N  -  1 )  - 
1 ) ) ) )
9084, 85, 86, 87, 88, 89, 11itgsinexplem1 29941 . . . . . . . . 9  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ ( N  -  1 ) )  x.  ( sin `  x
) )  _d x  =  ( ( N  -  1 )  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) )  _d x ) )
914, 6, 6subsub4d 9860 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( N  - 
1 )  -  1 )  =  ( N  -  ( 1  +  1 ) ) )
92 1p1e2 10545 . . . . . . . . . . . . . . . . 17  |-  ( 1  +  1 )  =  2
9392a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  +  1 )  =  2 )
9493oveq2d 6215 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  -  (
1  +  1 ) )  =  ( N  -  2 ) )
9591, 94eqtrd 2495 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( N  - 
1 )  -  1 )  =  ( N  -  2 ) )
9695adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( N  -  1 )  -  1 )  =  ( N  - 
2 ) )
9796oveq2d 6215 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( ( N  -  1 )  -  1 ) )  =  ( ( sin `  x ) ^ ( N  -  2 ) ) )
9897oveq2d 6215 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) )  =  ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) ) )
9998itgeq2dv 21391 . . . . . . . . . 10  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ (
( N  -  1 )  -  1 ) ) )  _d x  =  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x )
10099oveq2d 6215 . . . . . . . . 9  |-  ( ph  ->  ( ( N  - 
1 )  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( ( N  -  1 )  -  1 ) ) )  _d x )  =  ( ( N  -  1 )  x.  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x ) )
101 sincossq 13577 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
( ( sin `  x
) ^ 2 )  +  ( ( cos `  x ) ^ 2 ) )  =  1 )
1025a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  1  e.  CC )
103 sincl 13527 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  ( sin `  x )  e.  CC )
104103sqcld 12122 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( sin `  x
) ^ 2 )  e.  CC )
105 coscl 13528 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  ( cos `  x )  e.  CC )
106105sqcld 12122 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( cos `  x
) ^ 2 )  e.  CC )
107102, 104, 106subaddd 9847 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
( 1  -  (
( sin `  x
) ^ 2 ) )  =  ( ( cos `  x ) ^ 2 )  <->  ( (
( sin `  x
) ^ 2 )  +  ( ( cos `  x ) ^ 2 ) )  =  1 ) )
108101, 107mpbird 232 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
1  -  ( ( sin `  x ) ^ 2 ) )  =  ( ( cos `  x ) ^ 2 ) )
109108eqcomd 2462 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
( cos `  x
) ^ 2 )  =  ( 1  -  ( ( sin `  x
) ^ 2 ) ) )
11034, 109syl 16 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 0 (,) pi )  ->  (
( cos `  x
) ^ 2 )  =  ( 1  -  ( ( sin `  x
) ^ 2 ) ) )
111110oveq1d 6214 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0 (,) pi )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  =  ( ( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) ) )
112111adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  =  ( ( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) ) )
113112itgeq2dv 21391 . . . . . . . . . . 11  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x  =  S. ( 0 (,) pi ) ( ( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  _d x )
1145a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  1  e.  CC )
11535sqcld 12122 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0 (,) pi )  ->  (
( sin `  x
) ^ 2 )  e.  CC )
116115adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ 2 )  e.  CC )
11795eqcomd 2462 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( N  -  2 )  =  ( ( N  -  1 )  -  1 ) )
118 nnm1nn0 10731 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  -  1 )  e.  NN  ->  (
( N  -  1 )  -  1 )  e.  NN0 )
11911, 118syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( N  - 
1 )  -  1 )  e.  NN0 )
120117, 119eqeltrd 2542 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( N  -  2 )  e.  NN0 )
121120adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( N  -  2 )  e.  NN0 )
12236, 121expcld 12124 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( N  -  2 ) )  e.  CC )
123114, 116, 122subdird 9911 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  =  ( ( 1  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  -  (
( ( sin `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) ) ) )
124122mulid2d 9514 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
1  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  =  ( ( sin `  x ) ^ ( N  -  2 ) ) )
12524a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  2  e.  NN0 )
12636, 121, 125expaddd 12126 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( 2  +  ( N  - 
2 ) ) )  =  ( ( ( sin `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  2 ) ) ) )
12718, 4pncan3d 9832 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  +  ( N  -  2 ) )  =  N )
128127oveq2d 6215 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( sin `  x
) ^ ( 2  +  ( N  - 
2 ) ) )  =  ( ( sin `  x ) ^ N
) )
129128adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( 2  +  ( N  - 
2 ) ) )  =  ( ( sin `  x ) ^ N
) )
130126, 129eqtr3d 2497 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( ( sin `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  =  ( ( sin `  x
) ^ N ) )
131124, 130oveq12d 6217 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( 1  x.  (
( sin `  x
) ^ ( N  -  2 ) ) )  -  ( ( ( sin `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) ) )  =  ( ( ( sin `  x ) ^ ( N  -  2 ) )  -  ( ( sin `  x ) ^ N ) ) )
132123, 131eqtrd 2495 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( 1  -  (
( sin `  x
) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  =  ( ( ( sin `  x ) ^ ( N  - 
2 ) )  -  ( ( sin `  x
) ^ N ) ) )
133132itgeq2dv 21391 . . . . . . . . . . 11  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( 1  -  ( ( sin `  x ) ^ 2 ) )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x  =  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ ( N  -  2 ) )  -  ( ( sin `  x ) ^ N
) )  _d x )
134120adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  ( N  -  2 )  e.  NN0 )
13550, 134expcld 12124 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ ( N  -  2 ) )  e.  CC )
136 eqid 2454 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  - 
2 ) ) )  =  ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  -  2 ) ) )
137136fvmpt2 5889 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( ( sin `  x
) ^ ( N  -  2 ) )  e.  CC )  -> 
( ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  -  2 ) ) ) `  x
)  =  ( ( sin `  x ) ^ ( N  - 
2 ) ) )
13855, 135, 137syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) ) `  x )  =  ( ( sin `  x ) ^ ( N  -  2 ) ) )
139138eqcomd 2462 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 0 [,] pi ) )  ->  (
( sin `  x
) ^ ( N  -  2 ) )  =  ( ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  - 
2 ) ) ) `
 x ) )
140139mpteq2dva 4485 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  =  ( x  e.  ( 0 [,] pi )  |->  ( ( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) ) `  x ) ) )
141 nfmpt1 4488 . . . . . . . . . . . . . . . 16  |-  F/_ x
( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) )
14262, 64, 120expcnfg 29920 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  CC  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  ( CC
-cn-> CC ) )
143141, 142, 66cncfmptss 29915 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( x  e.  CC  |->  ( ( sin `  x ) ^ ( N  -  2 ) ) ) `  x
) )  e.  ( ( 0 [,] pi ) -cn-> CC ) )
144140, 143eqeltrd 2542 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )
145 cniccibl 21450 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  (
x  e.  ( 0 [,] pi )  |->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  ( ( 0 [,] pi )
-cn-> CC ) )  -> 
( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  L^1 )
14653, 54, 144, 145syl3anc 1219 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( 0 [,] pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  L^1 )
14740, 42, 135, 146iblss 21414 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( sin `  x
) ^ ( N  -  2 ) ) )  e.  L^1 )
148122, 147, 38, 71itgsub 21435 . . . . . . . . . . 11  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ ( N  -  2 ) )  -  ( ( sin `  x ) ^ N
) )  _d x  =  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) )
149113, 133, 1483eqtrd 2499 . . . . . . . . . 10  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( cos `  x
) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  2 ) ) )  _d x  =  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) )
150149oveq2d 6215 . . . . . . . . 9  |-  ( ph  ->  ( ( N  - 
1 )  x.  S. ( 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x
) ^ ( N  -  2 ) ) )  _d x )  =  ( ( N  -  1 )  x.  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) ) )
15190, 100, 1503eqtrd 2499 . . . . . . . 8  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x
) ^ ( N  -  1 ) )  x.  ( sin `  x
) )  _d x  =  ( ( N  -  1 )  x.  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) ) )
15230, 83, 1513eqtrd 2499 . . . . . . 7  |-  ( ph  ->  ( I `  N
)  =  ( ( N  -  1 )  x.  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) ) )
153 oveq2 6207 . . . . . . . . . . . . 13  |-  ( n  =  ( N  - 
2 )  ->  (
( sin `  x
) ^ n )  =  ( ( sin `  x ) ^ ( N  -  2 ) ) )
154153adantr 465 . . . . . . . . . . . 12  |-  ( ( n  =  ( N  -  2 )  /\  x  e.  ( 0 (,) pi ) )  ->  ( ( sin `  x ) ^ n
)  =  ( ( sin `  x ) ^ ( N  - 
2 ) ) )
155154itgeq2dv 21391 . . . . . . . . . . 11  |-  ( n  =  ( N  - 
2 )  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  - 
2 ) )  _d x )
156155adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  n  =  ( N  -  2
) )  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  - 
2 ) )  _d x )
157 itgex 21380 . . . . . . . . . . 11  |-  S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  e.  _V
158157a1i 11 . . . . . . . . . 10  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  - 
2 ) )  _d x  e.  _V )
15914, 156, 120, 158fvmptd 5887 . . . . . . . . 9  |-  ( ph  ->  ( I `  ( N  -  2 ) )  =  S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x )
160159, 30oveq12d 6217 . . . . . . . 8  |-  ( ph  ->  ( ( I `  ( N  -  2
) )  -  (
I `  N )
)  =  ( S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) )
161160oveq2d 6215 . . . . . . 7  |-  ( ph  ->  ( ( N  - 
1 )  x.  (
( I `  ( N  -  2 ) )  -  ( I `
 N ) ) )  =  ( ( N  -  1 )  x.  ( S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  -  2 ) )  _d x  -  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N
)  _d x ) ) )
162122, 147itgcl 21393 . . . . . . . . 9  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  - 
2 ) )  _d x  e.  CC )
163159, 162eqeltrd 2542 . . . . . . . 8  |-  ( ph  ->  ( I `  ( N  -  2 ) )  e.  CC )
16412, 163, 73subdid 9910 . . . . . . 7  |-  ( ph  ->  ( ( N  - 
1 )  x.  (
( I `  ( N  -  2 ) )  -  ( I `
 N ) ) )  =  ( ( ( N  -  1 )  x.  ( I `
 ( N  - 
2 ) ) )  -  ( ( N  -  1 )  x.  ( I `  N
) ) ) )
165152, 161, 1643eqtr2d 2501 . . . . . 6  |-  ( ph  ->  ( I `  N
)  =  ( ( ( N  -  1 )  x.  ( I `
 ( N  - 
2 ) ) )  -  ( ( N  -  1 )  x.  ( I `  N
) ) ) )
166165eqcomd 2462 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  x.  ( I `  ( N  -  2 ) ) )  -  (
( N  -  1 )  x.  ( I `
 N ) ) )  =  ( I `
 N ) )
16712, 163mulcld 9516 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  x.  (
I `  ( N  -  2 ) ) )  e.  CC )
16812, 73mulcld 9516 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  x.  (
I `  N )
)  e.  CC )
169167, 168, 73subaddd 9847 . . . . 5  |-  ( ph  ->  ( ( ( ( N  -  1 )  x.  ( I `  ( N  -  2
) ) )  -  ( ( N  - 
1 )  x.  (
I `  N )
) )  =  ( I `  N )  <-> 
( ( ( N  -  1 )  x.  ( I `  N
) )  +  ( I `  N ) )  =  ( ( N  -  1 )  x.  ( I `  ( N  -  2
) ) ) ) )
170166, 169mpbid 210 . . . 4  |-  ( ph  ->  ( ( ( N  -  1 )  x.  ( I `  N
) )  +  ( I `  N ) )  =  ( ( N  -  1 )  x.  ( I `  ( N  -  2
) ) ) )
1719, 77, 1703eqtrd 2499 . . 3  |-  ( ph  ->  ( N  x.  (
I `  N )
)  =  ( ( N  -  1 )  x.  ( I `  ( N  -  2
) ) ) )
172171oveq1d 6214 . 2  |-  ( ph  ->  ( ( N  x.  ( I `  N
) )  /  N
)  =  ( ( ( N  -  1 )  x.  ( I `
 ( N  - 
2 ) ) )  /  N ) )
17380nnne0d 10476 . . 3  |-  ( ph  ->  N  =/=  0 )
17473, 4, 173divcan3d 10222 . 2  |-  ( ph  ->  ( ( N  x.  ( I `  N
) )  /  N
)  =  ( I `
 N ) )
17512, 163, 4, 173div23d 10254 . 2  |-  ( ph  ->  ( ( ( N  -  1 )  x.  ( I `  ( N  -  2 ) ) )  /  N
)  =  ( ( ( N  -  1 )  /  N )  x.  ( I `  ( N  -  2
) ) ) )
176172, 174, 1753eqtr3d 2503 1  |-  ( ph  ->  ( I `  N
)  =  ( ( ( N  -  1 )  /  N )  x.  ( I `  ( N  -  2
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3076    C_ wss 3435   class class class wbr 4399    |-> cmpt 4457   dom cdm 4947   ` cfv 5525  (class class class)co 6199   CCcc 9390   RRcr 9391   0cc0 9392   1c1 9393    + caddc 9395    x. cmul 9397    < clt 9528    - cmin 9705   -ucneg 9706    / cdiv 10103   NNcn 10432   2c2 10481   NN0cn0 10689   ZZcz 10756   ZZ>=cuz 10971   (,)cioo 11410   [,]cicc 11413   ^cexp 11981   sincsin 13466   cosccos 13467   picpi 13469   -cn->ccncf 20583   volcvol 21078   L^1cibl 21229   S.citg 21230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-inf2 7957  ax-cc 8714  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470  ax-addf 9471  ax-mulf 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-iin 4281  df-disj 4370  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-se 4787  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-of 6429  df-ofr 6430  df-om 6586  df-1st 6686  df-2nd 6687  df-supp 6800  df-recs 6941  df-rdg 6975  df-1o 7029  df-2o 7030  df-oadd 7033  df-omul 7034  df-er 7210  df-map 7325  df-pm 7326  df-ixp 7373  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-fsupp 7731  df-fi 7771  df-sup 7801  df-oi 7834  df-card 8219  df-acn 8222  df-cda 8447  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-4 10492  df-5 10493  df-6 10494  df-7 10495  df-8 10496  df-9 10497  df-10 10498  df-n0 10690  df-z 10757  df-dec 10866  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-ioo 11414  df-ioc 11415  df-ico 11416  df-icc 11417  df-fz 11554  df-fzo 11665  df-fl 11758  df-mod 11825  df-seq 11923  df-exp 11982  df-fac 12168  df-bc 12195  df-hash 12220  df-shft 12673  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-limsup 13066  df-clim 13083  df-rlim 13084  df-sum 13281  df-ef 13470  df-sin 13472  df-cos 13473  df-pi 13475  df-struct 14293  df-ndx 14294  df-slot 14295  df-base 14296  df-sets 14297  df-ress 14298  df-plusg 14369  df-mulr 14370  df-starv 14371  df-sca 14372  df-vsca 14373  df-ip 14374  df-tset 14375  df-ple 14376  df-ds 14378  df-unif 14379  df-hom 14380  df-cco 14381  df-rest 14479  df-topn 14480  df-0g 14498  df-gsum 14499  df-topgen 14500  df-pt 14501  df-prds 14504  df-xrs 14558  df-qtop 14563  df-imas 14564  df-xps 14566  df-mre 14642  df-mrc 14643  df-acs 14645  df-mnd 15533  df-submnd 15583  df-mulg 15666  df-cntz 15953  df-cmn 16399  df-psmet 17933  df-xmet 17934  df-met 17935  df-bl 17936  df-mopn 17937  df-fbas 17938  df-fg 17939  df-cnfld 17943  df-top 18634  df-bases 18636  df-topon 18637  df-topsp 18638  df-cld 18754  df-ntr 18755  df-cls 18756  df-nei 18833  df-lp 18871  df-perf 18872  df-cn 18962  df-cnp 18963  df-haus 19050  df-cmp 19121  df-tx 19266  df-hmeo 19459  df-fil 19550  df-fm 19642  df-flim 19643  df-flf 19644  df-xms 20026  df-ms 20027  df-tms 20028  df-cncf 20585  df-ovol 21079  df-vol 21080  df-mbf 21231  df-itg1 21232  df-itg2 21233  df-ibl 21234  df-itg 21235  df-0p 21280  df-limc 21473  df-dv 21474
This theorem is referenced by:  wallispilem2  30008  wallispilem4  30010  wallispilem5  30011
  Copyright terms: Public domain W3C validator