MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgreval Structured version   Unicode version

Theorem itgreval 21279
Description: Decompose the integral of a real function into positive and negative parts. (Contributed by Mario Carneiro, 31-Jul-2014.)
Hypotheses
Ref Expression
iblrelem.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
itgreval.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
Assertion
Ref Expression
itgreval  |-  ( ph  ->  S. A B  _d x  =  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem itgreval
StepHypRef Expression
1 iblrelem.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
2 itgreval.2 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
31, 2itgrevallem1 21277 . 2  |-  ( ph  ->  S. A B  _d x  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) ) ) )
4 0re 9391 . . . . . 6  |-  0  e.  RR
5 ifcl 3836 . . . . . 6  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  B ,  B , 
0 )  e.  RR )
61, 4, 5sylancl 662 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  RR )
71iblrelem 21273 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  e.  RR ) ) )
82, 7mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) )  e.  RR ) )
98simp1d 1000 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
101, 9mbfpos 21134 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn
)
11 ifan 3840 . . . . . . . . 9  |-  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )
1211mpteq2i 4380 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 ) )
1312fveq2i 5699 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 ) ) )
148simp2d 1001 . . . . . . 7  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )
1513, 14syl5eqelr 2528 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B , 
0 ) ,  0 ) ) )  e.  RR )
16 max1 11162 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  0  <_  if (
0  <_  B ,  B ,  0 ) )
174, 1, 16sylancr 663 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  B ,  B , 
0 ) )
186, 17iblpos 21275 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 ) ) )  e.  RR ) ) )
1910, 15, 18mpbir2and 913 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e.  L^1 )
206, 19, 17itgposval 21278 . . . 4  |-  ( ph  ->  S. A if ( 0  <_  B ,  B ,  0 )  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 ) ) ) )
2120, 13syl6eqr 2493 . . 3  |-  ( ph  ->  S. A if ( 0  <_  B ,  B ,  0 )  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) ) )
221renegcld 9780 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  RR )
23 ifcl 3836 . . . . . 6  |-  ( (
-u B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
2422, 4, 23sylancl 662 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
251, 9mbfneg 21133 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |-> 
-u B )  e. MblFn
)
2622, 25mbfpos 21134 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
27 ifan 3840 . . . . . . . . 9  |-  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 )
2827mpteq2i 4380 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) )
2928fveq2i 5699 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )
308simp3d 1002 . . . . . . 7  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  e.  RR )
3129, 30syl5eqelr 2528 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )  e.  RR )
32 max1 11162 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  -u B  e.  RR )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
334, 22, 32sylancr 663 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
3424, 33iblpos 21275 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1  <-> 
( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) )  e.  RR ) ) )
3526, 31, 34mpbir2and 913 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 )
3624, 35, 33itgposval 21278 . . . 4  |-  ( ph  ->  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  -u B ,  -u B ,  0 ) ,  0 ) ) ) )
3736, 29syl6eqr 2493 . . 3  |-  ( ph  ->  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) ) )
3821, 37oveq12d 6114 . 2  |-  ( ph  ->  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) ) ) )
393, 38eqtr4d 2478 1  |-  ( ph  ->  S. A B  _d x  =  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ifcif 3796   class class class wbr 4297    e. cmpt 4355   ` cfv 5423  (class class class)co 6096   RRcr 9286   0cc0 9287    <_ cle 9424    - cmin 9600   -ucneg 9601  MblFncmbf 21099   S.2citg2 21101   L^1cibl 21102   S.citg 21103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365  ax-addf 9366
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-disj 4268  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-ofr 6326  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-1o 6925  df-2o 6926  df-oadd 6929  df-er 7106  df-map 7221  df-pm 7222  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-sup 7696  df-oi 7729  df-card 8114  df-cda 8342  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-n0 10585  df-z 10652  df-uz 10867  df-q 10959  df-rp 10997  df-xadd 11095  df-ioo 11309  df-ico 11311  df-icc 11312  df-fz 11443  df-fzo 11554  df-fl 11647  df-mod 11714  df-seq 11812  df-exp 11871  df-hash 12109  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-clim 12971  df-sum 13169  df-xmet 17815  df-met 17816  df-ovol 20953  df-vol 20954  df-mbf 21104  df-itg1 21105  df-itg2 21106  df-ibl 21107  df-itg 21108  df-0p 21153
This theorem is referenced by:  itgneg  21286  itgitg1  21291  itgaddlem2  21306  itgmulc2lem2  21315  itgaddnclem2  28456  itgmulc2nclem2  28464
  Copyright terms: Public domain W3C validator